Interlaboratory study of flexural strength in additively manufactured alumina

IF 3.5 3区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS
Russell Allan Maier, Andrew J. Allen, Brandon Cox, Igor Levin
{"title":"Interlaboratory study of flexural strength in additively manufactured alumina","authors":"Russell Allan Maier,&nbsp;Andrew J. Allen,&nbsp;Brandon Cox,&nbsp;Igor Levin","doi":"10.1111/jace.20133","DOIUrl":null,"url":null,"abstract":"<p>We report the results of an international interlaboratory study of the flexural strength of alumina fabricated across six laboratories using the vat photopolymerization ceramic additive manufacturing (AM) technology. The mechanical testing of all the specimens, 142 in total, was performed at the National Institute of Standards and Technology (NIST) according to the well-established four-point bending method standardized for traditional ceramics. Overall, the existing ASTM standard for the four-point bend testing proved adequate for AM ceramics, with several modifications to the specimen requirements to account for the specifics of AM processes. Critical flaws that caused failure were identified in all but two cases using optical fractography augmented with the imaging of fracture surfaces in a scanning electron microscope. The flexural strength data, analyzed following the Weibull statistics, exhibited considerable variation among the specimen sets manufactured by different laboratories. This variability correlated with the presence of many distinct critical flaws. We identified seven types of flaws that accounted for the failure of 94% of specimens. The prevalent flaws depend on the printing direction relative to the specimen's geometry. We discuss the nature of these flaws and their relation to the printing and post-processing conditions. Removal of several types of critical flaws will significantly improve mechanical properties of ceramic parts built using vat-photopolymerization AM.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 2","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20133","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

We report the results of an international interlaboratory study of the flexural strength of alumina fabricated across six laboratories using the vat photopolymerization ceramic additive manufacturing (AM) technology. The mechanical testing of all the specimens, 142 in total, was performed at the National Institute of Standards and Technology (NIST) according to the well-established four-point bending method standardized for traditional ceramics. Overall, the existing ASTM standard for the four-point bend testing proved adequate for AM ceramics, with several modifications to the specimen requirements to account for the specifics of AM processes. Critical flaws that caused failure were identified in all but two cases using optical fractography augmented with the imaging of fracture surfaces in a scanning electron microscope. The flexural strength data, analyzed following the Weibull statistics, exhibited considerable variation among the specimen sets manufactured by different laboratories. This variability correlated with the presence of many distinct critical flaws. We identified seven types of flaws that accounted for the failure of 94% of specimens. The prevalent flaws depend on the printing direction relative to the specimen's geometry. We discuss the nature of these flaws and their relation to the printing and post-processing conditions. Removal of several types of critical flaws will significantly improve mechanical properties of ceramic parts built using vat-photopolymerization AM.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the American Ceramic Society
Journal of the American Ceramic Society 工程技术-材料科学:硅酸盐
CiteScore
7.50
自引率
7.70%
发文量
590
审稿时长
2.1 months
期刊介绍: The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials. Papers on fundamental ceramic and glass science are welcome including those in the following areas: Enabling materials for grand challenges[...] Materials design, selection, synthesis and processing methods[...] Characterization of compositions, structures, defects, and properties along with new methods [...] Mechanisms, Theory, Modeling, and Simulation[...] JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信