{"title":"Fabrication and characterization of foamed ceramics with a hierarchical pore structure from pyrite-rich cyanide tailing","authors":"Xuexiang Ge, Maoxiang Niu, Yonggang Dai, Xing Jin, Qingping Wang, Ying Zhang","doi":"10.1111/jace.20234","DOIUrl":null,"url":null,"abstract":"<p>In this study, foamed ceramics with hierarchical closed-cell pore structures (HPS-FC) were successfully prepared using pyrite-rich cyanide tailing (CT) and fly ash. The formation mechanism of the hierarchical pore structure was analyzed by investigating the influence of the heating rate on both the pore structure and the physical properties of foamed ceramics. The results demonstrate that CT is suitable for the preparation of foamed ceramics due to its low softening temperature and self-expansion capability at high temperatures. Interestingly, the heating rate significantly affects the pore structure of foamed ceramics prepared from CT. As the heating rate increases from 1 to 4°C/min, a hierarchical pore structure emerges, characterized by gradual alterations in bulk density, compressive strength, and thermal conductivity within the foamed ceramics. Whereas, excessive heating rates (≥6°C/min) result in the generation of abnormally large pores, which deteriorate the mechanical properties of foamed ceramics. The oxidation of FeS<sub>2</sub> from CT consumes a large amount of oxygen during heating, which is the primary reason for the formation of the hierarchical pore structure. Therefore, HPS-FC can be produced from CT by adjusting the heating rate, which combines high strength with good thermal insulation and demonstrates promising applications in prefabricated buildings.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 2","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20234","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, foamed ceramics with hierarchical closed-cell pore structures (HPS-FC) were successfully prepared using pyrite-rich cyanide tailing (CT) and fly ash. The formation mechanism of the hierarchical pore structure was analyzed by investigating the influence of the heating rate on both the pore structure and the physical properties of foamed ceramics. The results demonstrate that CT is suitable for the preparation of foamed ceramics due to its low softening temperature and self-expansion capability at high temperatures. Interestingly, the heating rate significantly affects the pore structure of foamed ceramics prepared from CT. As the heating rate increases from 1 to 4°C/min, a hierarchical pore structure emerges, characterized by gradual alterations in bulk density, compressive strength, and thermal conductivity within the foamed ceramics. Whereas, excessive heating rates (≥6°C/min) result in the generation of abnormally large pores, which deteriorate the mechanical properties of foamed ceramics. The oxidation of FeS2 from CT consumes a large amount of oxygen during heating, which is the primary reason for the formation of the hierarchical pore structure. Therefore, HPS-FC can be produced from CT by adjusting the heating rate, which combines high strength with good thermal insulation and demonstrates promising applications in prefabricated buildings.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.