{"title":"Ship target detection in SAR images based on SimAM attention YOLOv8","authors":"Yuqiao Xu, Wei Du, Lewu Deng, Yi Zhang, Wanli Wen","doi":"10.1049/cmu2.12837","DOIUrl":null,"url":null,"abstract":"<p>Deep learning has been widely applied in ship detection in synthetic aperture radar (SAR) imagery due to their powerful feature representation capabilities. However, YOLOv8 models treat all regions of the image equally during convolutional feature processing, resulting in less-than-ideal outcomes. To address this limitation, this study proposes a simple, parameter-free attention module (SimAM) attention-based YOLOv8 algorithm for ship detection in SAR images. The proposed algorithm first passes through a backbone network, which incorporates SimAM attention modules. The SimAM attention mechanism successfully allocates the convolutional neural network's 3D weights effectively using an energy function method, without introducing additional parameters. This mechanism enables the network to automatically emphasize key features in the image, enhancing its ability to represent target areas and suppress background interference. Subsequently, deep features are upsampled and fused with relatively shallow features to extract features at three different scales and achieve target detection, ultimately outputting classification and positional information of the targets. The effectiveness of the model on the SAR-ship-dataset is experimentally validated achieving an mAP50 value of 97.72% and an mAP50-95 value of 68.99%, confirming the superiority of the proposed model.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"18 19","pages":"1428-1436"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12837","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12837","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning has been widely applied in ship detection in synthetic aperture radar (SAR) imagery due to their powerful feature representation capabilities. However, YOLOv8 models treat all regions of the image equally during convolutional feature processing, resulting in less-than-ideal outcomes. To address this limitation, this study proposes a simple, parameter-free attention module (SimAM) attention-based YOLOv8 algorithm for ship detection in SAR images. The proposed algorithm first passes through a backbone network, which incorporates SimAM attention modules. The SimAM attention mechanism successfully allocates the convolutional neural network's 3D weights effectively using an energy function method, without introducing additional parameters. This mechanism enables the network to automatically emphasize key features in the image, enhancing its ability to represent target areas and suppress background interference. Subsequently, deep features are upsampled and fused with relatively shallow features to extract features at three different scales and achieve target detection, ultimately outputting classification and positional information of the targets. The effectiveness of the model on the SAR-ship-dataset is experimentally validated achieving an mAP50 value of 97.72% and an mAP50-95 value of 68.99%, confirming the superiority of the proposed model.
期刊介绍:
IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth.
Topics include, but are not limited to:
Coding and Communication Theory;
Modulation and Signal Design;
Wired, Wireless and Optical Communication;
Communication System
Special Issues. Current Call for Papers:
Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf
UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf