Tabita Ghete, Farina Kock, Martina Pontones, David Pfrang, Max Westphal, Henning Höfener, Markus Metzler
{"title":"Models for the marrow: A comprehensive review of AI-based cell classification methods and malignancy detection in bone marrow aspirate smears","authors":"Tabita Ghete, Farina Kock, Martina Pontones, David Pfrang, Max Westphal, Henning Höfener, Markus Metzler","doi":"10.1002/hem3.70048","DOIUrl":null,"url":null,"abstract":"<p>Given the high prevalence of artificial intelligence (AI) research in medicine, the development of deep learning (DL) algorithms based on image recognition, such as the analysis of bone marrow aspirate (BMA) smears, is rapidly increasing in the field of hematology and oncology. The models are trained to identify the optimal regions of the BMA smear for differential cell count and subsequently detect and classify a number of cell types, which can ultimately be utilized for diagnostic purposes. Moreover, AI is capable of identifying genetic mutations phenotypically. This pipeline has the potential to offer an accurate and rapid preliminary analysis of the bone marrow in the clinical routine. However, the intrinsic complexity of hematological diseases presents several challenges for the automatic morphological assessment. To ensure general applicability across multiple medical centers and to deliver high accuracy on prospective clinical data, AI models would require highly heterogeneous training datasets. This review presents a systematic analysis of models for cell classification and detection of hematological malignancies published in the last 5 years (2019–2024). It provides insight into the challenges and opportunities of these DL-assisted tasks.</p>","PeriodicalId":12982,"journal":{"name":"HemaSphere","volume":"8 12","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hem3.70048","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HemaSphere","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hem3.70048","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Given the high prevalence of artificial intelligence (AI) research in medicine, the development of deep learning (DL) algorithms based on image recognition, such as the analysis of bone marrow aspirate (BMA) smears, is rapidly increasing in the field of hematology and oncology. The models are trained to identify the optimal regions of the BMA smear for differential cell count and subsequently detect and classify a number of cell types, which can ultimately be utilized for diagnostic purposes. Moreover, AI is capable of identifying genetic mutations phenotypically. This pipeline has the potential to offer an accurate and rapid preliminary analysis of the bone marrow in the clinical routine. However, the intrinsic complexity of hematological diseases presents several challenges for the automatic morphological assessment. To ensure general applicability across multiple medical centers and to deliver high accuracy on prospective clinical data, AI models would require highly heterogeneous training datasets. This review presents a systematic analysis of models for cell classification and detection of hematological malignancies published in the last 5 years (2019–2024). It provides insight into the challenges and opportunities of these DL-assisted tasks.
期刊介绍:
HemaSphere, as a publication, is dedicated to disseminating the outcomes of profoundly pertinent basic, translational, and clinical research endeavors within the field of hematology. The journal actively seeks robust studies that unveil novel discoveries with significant ramifications for hematology.
In addition to original research, HemaSphere features review articles and guideline articles that furnish lucid synopses and discussions of emerging developments, along with recommendations for patient care.
Positioned as the foremost resource in hematology, HemaSphere augments its offerings with specialized sections like HemaTopics and HemaPolicy. These segments engender insightful dialogues covering a spectrum of hematology-related topics, including digestible summaries of pivotal articles, updates on new therapies, deliberations on European policy matters, and other noteworthy news items within the field. Steering the course of HemaSphere are Editor in Chief Jan Cools and Deputy Editor in Chief Claire Harrison, alongside the guidance of an esteemed Editorial Board comprising international luminaries in both research and clinical realms, each representing diverse areas of hematologic expertise.