Silent Information Regulator 1/Peroxisome Proliferator-Activated Receptor-γ Coactivator-1α Axis: A Promising Target for Parkinson's and Alzheimer's Disease Therapies

IF 3.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ahsas Goyal, Anshika Kumari, Aanchal Verma, Vandana Chaudhary, Vaibhav Agrawal, Harlokesh Narayan Yadav
{"title":"Silent Information Regulator 1/Peroxisome Proliferator-Activated Receptor-γ Coactivator-1α Axis: A Promising Target for Parkinson's and Alzheimer's Disease Therapies","authors":"Ahsas Goyal,&nbsp;Anshika Kumari,&nbsp;Aanchal Verma,&nbsp;Vandana Chaudhary,&nbsp;Vaibhav Agrawal,&nbsp;Harlokesh Narayan Yadav","doi":"10.1002/jbt.70078","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>One of the key challenges in medical research is developing safe medications to treat neurodegenerative disorders. Increased oxidative stress, mitochondrial dysfunction, and neuroinflammation are common features of Alzheimer's disease (AD) and Parkinson's disease (PD). Silent information regulator 1 (SIRT-1), part of the sirtuin family, plays a critical role in various physiological processes by binding to histones and nonhistone proteins. SIRT-1 primarily mitigates oxidative stress and regulates mitochondrial activity by maintaining the deacetylated form of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), ensuring stable PGC-1α levels. Research has shown reduced SIRT-1/PGC-1α expression in AD and PD models. Targeting this pathway presents a promising therapeutic approach for managing AD and PD, potentially leading to disease-modifying treatments and improved outcomes. This review highlights the findings of various studies suggesting that the SIRT-1/PGC-1α pathway promotes mitochondrial biogenesis, synaptic plasticity, and cognitive function, as well as exerts antioxidant, anti-inflammatory, and anti-apoptotic effects, offering a potential method for AD and PD treatment.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"38 12","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70078","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

One of the key challenges in medical research is developing safe medications to treat neurodegenerative disorders. Increased oxidative stress, mitochondrial dysfunction, and neuroinflammation are common features of Alzheimer's disease (AD) and Parkinson's disease (PD). Silent information regulator 1 (SIRT-1), part of the sirtuin family, plays a critical role in various physiological processes by binding to histones and nonhistone proteins. SIRT-1 primarily mitigates oxidative stress and regulates mitochondrial activity by maintaining the deacetylated form of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), ensuring stable PGC-1α levels. Research has shown reduced SIRT-1/PGC-1α expression in AD and PD models. Targeting this pathway presents a promising therapeutic approach for managing AD and PD, potentially leading to disease-modifying treatments and improved outcomes. This review highlights the findings of various studies suggesting that the SIRT-1/PGC-1α pathway promotes mitochondrial biogenesis, synaptic plasticity, and cognitive function, as well as exerts antioxidant, anti-inflammatory, and anti-apoptotic effects, offering a potential method for AD and PD treatment.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
2.80%
发文量
277
审稿时长
6-12 weeks
期刊介绍: The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信