{"title":"Augmentation of Solid Tumor Immunotherapy With IL-12","authors":"Christian Geils, Katie L. Kathrein","doi":"10.1002/jgm.70000","DOIUrl":null,"url":null,"abstract":"<p><i>Immunotherapy</i> describes a class of therapies in which the immune system is manipulated for therapeutic benefit. These treatments include immune checkpoint inhibitors, adoptive cell therapy, and vaccines. For many hematological malignancies, immunotherapy has emerged as an essential treatment component. However, this success has yet to be replicated for solid tumors, which develop advanced physical and molecular mechanisms for suppressing and evading immune destruction. Nevertheless, cytokine immunotherapy presents a potential remedy to these barriers by delivering a proinflammatory immune signal to the tumor and thereby transforming it from immunologically “cold” to “hot.” Interleukin-12 (IL-12), one of the most potent proinflammatory cytokines, was initially investigated for this purpose. However, initial murine and human studies in which IL-12 was administered systemically resulted in dangerous immunotoxicity associated with off-target immune activation. As a result, recent studies have employed advanced cell and molecular engineering approaches to reduce IL-12 toxicity while increasing or maintaining its efficacy such that its effective doses can be tolerated in humans. This review highlights such developments and identifies promising future directions.</p>","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":"26 12","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgm.70000","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Gene Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgm.70000","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Immunotherapy describes a class of therapies in which the immune system is manipulated for therapeutic benefit. These treatments include immune checkpoint inhibitors, adoptive cell therapy, and vaccines. For many hematological malignancies, immunotherapy has emerged as an essential treatment component. However, this success has yet to be replicated for solid tumors, which develop advanced physical and molecular mechanisms for suppressing and evading immune destruction. Nevertheless, cytokine immunotherapy presents a potential remedy to these barriers by delivering a proinflammatory immune signal to the tumor and thereby transforming it from immunologically “cold” to “hot.” Interleukin-12 (IL-12), one of the most potent proinflammatory cytokines, was initially investigated for this purpose. However, initial murine and human studies in which IL-12 was administered systemically resulted in dangerous immunotoxicity associated with off-target immune activation. As a result, recent studies have employed advanced cell and molecular engineering approaches to reduce IL-12 toxicity while increasing or maintaining its efficacy such that its effective doses can be tolerated in humans. This review highlights such developments and identifies promising future directions.
期刊介绍:
The aims and scope of The Journal of Gene Medicine include cutting-edge science of gene transfer and its applications in gene and cell therapy, genome editing with precision nucleases, epigenetic modifications of host genome by small molecules, siRNA, microRNA and other noncoding RNAs as therapeutic gene-modulating agents or targets, biomarkers for precision medicine, and gene-based prognostic/diagnostic studies.
Key areas of interest are the design of novel synthetic and viral vectors, novel therapeutic nucleic acids such as mRNA, modified microRNAs and siRNAs, antagomirs, aptamers, antisense and exon-skipping agents, refined genome editing tools using nucleic acid /protein combinations, physically or biologically targeted delivery and gene modulation, ex vivo or in vivo pharmacological studies including animal models, and human clinical trials.
Papers presenting research into the mechanisms underlying transfer and action of gene medicines, the application of the new technologies for stem cell modification or nucleic acid based vaccines, the identification of new genetic or epigenetic variations as biomarkers to direct precision medicine, and the preclinical/clinical development of gene/expression signatures indicative of diagnosis or predictive of prognosis are also encouraged.