Srimanta Barui, Austin Lebert, Francisco Jauregui, Krishna Sai Aparna Munjuluri, Kunal Kate
{"title":"Microstructure and mechanical properties of 3D-printed zirconia bone scaffold: Experimental and computational analysis","authors":"Srimanta Barui, Austin Lebert, Francisco Jauregui, Krishna Sai Aparna Munjuluri, Kunal Kate","doi":"10.1111/jace.20189","DOIUrl":null,"url":null,"abstract":"<p>Microextrusion-based additive manufacturing of zirconia-based bioceramics is capable of fabricating design-specific architectures with high mechanical strength properties and relative density. We developed a novel organic residue-free binder system for zirconia paste printing (ZP<sup>2</sup>) with the shear-thinning properties apropos to microextrusion-based 3D printing. Based on thermogravimetric analysis, debinding protocol was established followed by high-temperature heat treatment under four sintering conditions. Quantitative linear shrinkage (32.3%–42.7% ranging from in-plane to vertical direction), density (83.3%–87.5%), and surface roughness (7.7–13.8 µm from the parallel to the perpendicular to the infill direction) as a factor of sintering conditions (1400°C–1500°C for 3–4 h) were analyzed. Whereas qualitative phase assemblage demonstrated “sintering condition independent” phase stability; grain growth and reduction in porosity were observed in the microstructure with increment in sintering temperature and hold time. Interestingly, at higher temperature and hold time, the compressive (46–72.4 MPa) and tensile strength (16.2–23.1 MPa) properties experienced a trade-off between grain growth and reduction in porosity. The ZP<sup>2</sup> scaffolds sintered at lower temperature and hold time qualified for the bone scaffold applications having interconnected porosities, biologically relevant surface roughness, and human bone mimicking mechanical properties. With a unique finite element analysis recipe, the mechanical behavior of the “life-like” reconstructed computer aided design (CAD) geometries identical to real 3D-printed-sintered ZP<sup>2</sup> scaffolds was quantitatively predicted.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 2","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20189","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Microextrusion-based additive manufacturing of zirconia-based bioceramics is capable of fabricating design-specific architectures with high mechanical strength properties and relative density. We developed a novel organic residue-free binder system for zirconia paste printing (ZP2) with the shear-thinning properties apropos to microextrusion-based 3D printing. Based on thermogravimetric analysis, debinding protocol was established followed by high-temperature heat treatment under four sintering conditions. Quantitative linear shrinkage (32.3%–42.7% ranging from in-plane to vertical direction), density (83.3%–87.5%), and surface roughness (7.7–13.8 µm from the parallel to the perpendicular to the infill direction) as a factor of sintering conditions (1400°C–1500°C for 3–4 h) were analyzed. Whereas qualitative phase assemblage demonstrated “sintering condition independent” phase stability; grain growth and reduction in porosity were observed in the microstructure with increment in sintering temperature and hold time. Interestingly, at higher temperature and hold time, the compressive (46–72.4 MPa) and tensile strength (16.2–23.1 MPa) properties experienced a trade-off between grain growth and reduction in porosity. The ZP2 scaffolds sintered at lower temperature and hold time qualified for the bone scaffold applications having interconnected porosities, biologically relevant surface roughness, and human bone mimicking mechanical properties. With a unique finite element analysis recipe, the mechanical behavior of the “life-like” reconstructed computer aided design (CAD) geometries identical to real 3D-printed-sintered ZP2 scaffolds was quantitatively predicted.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.