Ziwen Zhou, Chen Liu, Weiwei Zhao, Jingze Liu, Ting Jiang, Wenyi Peng, Jiawang Xiong, Hao Wu, Chi Zhang, Yunhong Ding, Francesco Da Ros, Xingyuan Xu, Kun Xu, Siqi Yan, Ming Tang
{"title":"Ultrafast Silicon/Graphene Optical Nonlinear Activator for Neuromorphic Computing","authors":"Ziwen Zhou, Chen Liu, Weiwei Zhao, Jingze Liu, Ting Jiang, Wenyi Peng, Jiawang Xiong, Hao Wu, Chi Zhang, Yunhong Ding, Francesco Da Ros, Xingyuan Xu, Kun Xu, Siqi Yan, Ming Tang","doi":"10.1002/adom.202401686","DOIUrl":null,"url":null,"abstract":"<p>Optical neural networks (ONNs) have shown great promise in overcoming the speed and efficiency bottlenecks of artificial neural networks. However, the absence of high-speed, energy-efficient nonlinear activators significantly impedes the advancement of ONNs and their extension to ultrafast application scenarios like real-time intelligent signal processing. In this work, a novel silicon/graphene ultrafast all-optical nonlinear activator, leveraging the hybrid integration of silicon slot waveguides, plasmonic slot waveguides, and monolayer graphene is demonstrated. Exploiting the exceptional picosecond-scale photogenerated carrier relaxation time of graphene, the response time of the activator is markedly reduced to ≈93.6 ps, establishing all-optical activator as the fastest known in silicon photonics to knowledge. Moreover, the all-optical nonlinear activator holds a low threshold power of 5.49 mW and a corresponding power consumption per activation of 0.51 pJ. Its feasibility and capability for use in ONNs, manifesting performance comparable with commonly used activation functions are experimentally confirmed. This breakthrough in speed and energy efficiency of all-optical nonlinear activators opens the door to significant improvements in the performance and applicability of ONNs.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 34","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202401686","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Optical neural networks (ONNs) have shown great promise in overcoming the speed and efficiency bottlenecks of artificial neural networks. However, the absence of high-speed, energy-efficient nonlinear activators significantly impedes the advancement of ONNs and their extension to ultrafast application scenarios like real-time intelligent signal processing. In this work, a novel silicon/graphene ultrafast all-optical nonlinear activator, leveraging the hybrid integration of silicon slot waveguides, plasmonic slot waveguides, and monolayer graphene is demonstrated. Exploiting the exceptional picosecond-scale photogenerated carrier relaxation time of graphene, the response time of the activator is markedly reduced to ≈93.6 ps, establishing all-optical activator as the fastest known in silicon photonics to knowledge. Moreover, the all-optical nonlinear activator holds a low threshold power of 5.49 mW and a corresponding power consumption per activation of 0.51 pJ. Its feasibility and capability for use in ONNs, manifesting performance comparable with commonly used activation functions are experimentally confirmed. This breakthrough in speed and energy efficiency of all-optical nonlinear activators opens the door to significant improvements in the performance and applicability of ONNs.
期刊介绍:
Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.