R. A. Shutilov, E. A. Maksimovskii, P. S. Popovetskii, I. V. Korolkov, A. A. Gismatulin, I. K. Igumenov
{"title":"Processes of Coating Formation by Pulsed MOCVD in the ZrO2–HfO2 System","authors":"R. A. Shutilov, E. A. Maksimovskii, P. S. Popovetskii, I. V. Korolkov, A. A. Gismatulin, I. K. Igumenov","doi":"10.1134/S0022476624110027","DOIUrl":null,"url":null,"abstract":"<p>The ZrO<sub>2</sub>–HfO<sub>2</sub> oxide films are prepared by pulsed chemical vapor deposition using volatile organometallic precursors. It is shown that the morphology, thickness, and uniformity of the resulting coatings are affected by the mode of reaction space organization. A 360 nm thick oxide coating is obtained by introducing the precursor vapor and the reactant gas into the reactor through an earlier elaborated system of separate reaction components supply. The atomic force microscopy data show that the resulting surface is almost smooth and has an arithmetic average roughness of a few nanometers. Current-voltage and capacitance-voltage characteristics of the obtained ZrO<sub>2</sub>–HfO<sub>2</sub> oxide coatings are studied. It is noted that the breakdown electric field is almost independent of the oxide coating thickness (0.1-0.48 MV/cm) in the interval of 225-325 nm. The breakdown electric field increases as the oxide film thickness increases from 325 nm to 360 nm. The dependence of the dielectric constant on the oxide film thickness is determined from the measured capacitance-voltage characteristics of the obtained ZrO<sub>2</sub>–HfO<sub>2</sub> films. It is shown that this dependence depends linearly on the film thickness.</p>","PeriodicalId":668,"journal":{"name":"Journal of Structural Chemistry","volume":"65 11","pages":"2135 - 2142"},"PeriodicalIF":1.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S0022476624110027","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The ZrO2–HfO2 oxide films are prepared by pulsed chemical vapor deposition using volatile organometallic precursors. It is shown that the morphology, thickness, and uniformity of the resulting coatings are affected by the mode of reaction space organization. A 360 nm thick oxide coating is obtained by introducing the precursor vapor and the reactant gas into the reactor through an earlier elaborated system of separate reaction components supply. The atomic force microscopy data show that the resulting surface is almost smooth and has an arithmetic average roughness of a few nanometers. Current-voltage and capacitance-voltage characteristics of the obtained ZrO2–HfO2 oxide coatings are studied. It is noted that the breakdown electric field is almost independent of the oxide coating thickness (0.1-0.48 MV/cm) in the interval of 225-325 nm. The breakdown electric field increases as the oxide film thickness increases from 325 nm to 360 nm. The dependence of the dielectric constant on the oxide film thickness is determined from the measured capacitance-voltage characteristics of the obtained ZrO2–HfO2 films. It is shown that this dependence depends linearly on the film thickness.
期刊介绍:
Journal is an interdisciplinary publication covering all aspects of structural chemistry, including the theory of molecular structure and chemical bond; the use of physical methods to study the electronic and spatial structure of chemical species; structural features of liquids, solutions, surfaces, supramolecular systems, nano- and solid materials; and the crystal structure of solids.