P. A. Tkachenko, I. A. Baidina, V. Yu. Komarov, S. N. Berdyugin, S. V. Tkachev, D. B. Vasilchenko
{"title":"Formation of Binuclear Platinum(III) Sulphates in Sulphic Acid Solutions of Platinum(IV) Compounds","authors":"P. A. Tkachenko, I. A. Baidina, V. Yu. Komarov, S. N. Berdyugin, S. V. Tkachev, D. B. Vasilchenko","doi":"10.1134/S0022476624110052","DOIUrl":null,"url":null,"abstract":"<p>The <span>\\({{({{\\text{H}}_{3}}\\text{O})}_{2}}[\\text{Pt}_{2}^{\\text{III}}{{(\\text{S}{{\\text{O}}_{4}})}_{4}}{{({{\\text{H}}_{2}}\\text{O})}_{2}}]\\cdot 4{{\\text{H}}_{2}}\\text{O}\\)</span> compound (<b>1</b>) is isolated by keeping sulfuric acid solutions of the [Pt<sup>IV</sup>(H<sub>2</sub>O)<sub>2</sub>(OH)<sub>4</sub>] platinum hydroxide with an addition of 18-crown-6-ether. The structure of <b>1</b> (<i>C</i>2/<i>c</i>, <i>a</i> = 20.276(1) Å, <i>b</i> = 7.5844(5) Å, <i>c</i> = 13.8876(9) Å; β = 113.466(4)°; <i>V</i> = 1959.0(2) Å<sup>3</sup>; <i>Z</i> = 4) is determined by XRD and is shown to be formed by binuclear anionic platinum(III) aquasulfate complexes (containing bridging sulfate ligands and axial aqualigands), hydronium cations, and water molecules. The <span>\\({{({{\\text{H}}_{3}}\\text{O})}_{2}}[\\text{Pt}_{2}^{\\text{III}}{{(\\text{S}{{\\text{O}}_{4}})}_{4}}{{({{\\text{H}}_{2}}\\text{O})}_{2}}]\\)</span> (<b>2</b>) compound, containing no solvate water molecules, is prepared from a solution of the (Bu<sub>4</sub>N)<sub>2</sub>[Pt<sup>IV</sup>(NO<sub>3</sub>)<sub>6</sub>] salt in strong sulfuric acid. The structure of <b>2</b> (<i>P</i>2<sub>1</sub>, <i>a</i> = 7.4384(7) Å, <i>b</i> = 13471(1) Å, <i>c</i> = 7.566(1) Å; β = 101.419(4)°; <i>V</i> = 743.1(1) Å<sup>3</sup>; <i>Z</i> = 2), containing no solvate water molecules, is determined by XRD. The substances are characterized by Raman and NMR spectroscopy methods. The geometry of the <span>\\({{[\\text{Pt}_{2}^{\\text{III}}{{(\\text{S}{{\\text{O}}_{4}})}_{4}}{{({{\\text{H}}_{2}}\\text{O})}_{2}}]}^{2-}}\\)</span> anion is additionally calculated by the DFT method; the optimized model agrees well with structural data and confirms a presence of Pt–Pt bonding. Possible mechanisms of the formation of platinum(III) complexes in sulfate solutions of platinum(IV) compounds are discussed.</p>","PeriodicalId":668,"journal":{"name":"Journal of Structural Chemistry","volume":"65 11","pages":"2163 - 2174"},"PeriodicalIF":1.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S0022476624110052","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The \({{({{\text{H}}_{3}}\text{O})}_{2}}[\text{Pt}_{2}^{\text{III}}{{(\text{S}{{\text{O}}_{4}})}_{4}}{{({{\text{H}}_{2}}\text{O})}_{2}}]\cdot 4{{\text{H}}_{2}}\text{O}\) compound (1) is isolated by keeping sulfuric acid solutions of the [PtIV(H2O)2(OH)4] platinum hydroxide with an addition of 18-crown-6-ether. The structure of 1 (C2/c, a = 20.276(1) Å, b = 7.5844(5) Å, c = 13.8876(9) Å; β = 113.466(4)°; V = 1959.0(2) Å3; Z = 4) is determined by XRD and is shown to be formed by binuclear anionic platinum(III) aquasulfate complexes (containing bridging sulfate ligands and axial aqualigands), hydronium cations, and water molecules. The \({{({{\text{H}}_{3}}\text{O})}_{2}}[\text{Pt}_{2}^{\text{III}}{{(\text{S}{{\text{O}}_{4}})}_{4}}{{({{\text{H}}_{2}}\text{O})}_{2}}]\) (2) compound, containing no solvate water molecules, is prepared from a solution of the (Bu4N)2[PtIV(NO3)6] salt in strong sulfuric acid. The structure of 2 (P21, a = 7.4384(7) Å, b = 13471(1) Å, c = 7.566(1) Å; β = 101.419(4)°; V = 743.1(1) Å3; Z = 2), containing no solvate water molecules, is determined by XRD. The substances are characterized by Raman and NMR spectroscopy methods. The geometry of the \({{[\text{Pt}_{2}^{\text{III}}{{(\text{S}{{\text{O}}_{4}})}_{4}}{{({{\text{H}}_{2}}\text{O})}_{2}}]}^{2-}}\) anion is additionally calculated by the DFT method; the optimized model agrees well with structural data and confirms a presence of Pt–Pt bonding. Possible mechanisms of the formation of platinum(III) complexes in sulfate solutions of platinum(IV) compounds are discussed.
期刊介绍:
Journal is an interdisciplinary publication covering all aspects of structural chemistry, including the theory of molecular structure and chemical bond; the use of physical methods to study the electronic and spatial structure of chemical species; structural features of liquids, solutions, surfaces, supramolecular systems, nano- and solid materials; and the crystal structure of solids.