{"title":"Comparative Analysis of Excitonic and Biexcitonic Effects on the Power Conversion Efficiency of a CdSe/CdTe/ZnTe Quantum Dot Solar Cell","authors":"Murat Unluler, Fatih Koc","doi":"10.1002/adts.202400956","DOIUrl":null,"url":null,"abstract":"In this study, the power conversion efficiency (PCE) of a CdSe/CdTe/ZnTe quantum dot solar cell (QDSC) is investigated considering the influence of internal parameters such as CdSe core radius and CdTe and ZnTe shell thickness along with external parameters such as temperature and hydrostatic pressure. A comparative analysis is performed using both the original detailed balance model (ODBM) and the modified detailed balance model (MDBM). The main focus of the research is to investigate the effects of excitonic and biexcitonic effective gap energies, as well as the biexciton bound state, on the PCE in the presence of multiple exciton generation (MEG). Calculations using both ODBM and MDBM indicate that the distinct excitonic and biexcitonic effective bandgap energies, resulting from strong confinement effects in quantum dot (QD) structures, significantly affect the PCE in the presence of MEG. In addition, MDBM calculations considering the biexciton bound state show that this bound state critically affects the PCE. The discrepancy between the theoretically predicted maximum PCE and the considerably lower PCE observed in practical applications of QDSCs is also examined, along with the potential reasons for this phenomenon.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"12 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202400956","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the power conversion efficiency (PCE) of a CdSe/CdTe/ZnTe quantum dot solar cell (QDSC) is investigated considering the influence of internal parameters such as CdSe core radius and CdTe and ZnTe shell thickness along with external parameters such as temperature and hydrostatic pressure. A comparative analysis is performed using both the original detailed balance model (ODBM) and the modified detailed balance model (MDBM). The main focus of the research is to investigate the effects of excitonic and biexcitonic effective gap energies, as well as the biexciton bound state, on the PCE in the presence of multiple exciton generation (MEG). Calculations using both ODBM and MDBM indicate that the distinct excitonic and biexcitonic effective bandgap energies, resulting from strong confinement effects in quantum dot (QD) structures, significantly affect the PCE in the presence of MEG. In addition, MDBM calculations considering the biexciton bound state show that this bound state critically affects the PCE. The discrepancy between the theoretically predicted maximum PCE and the considerably lower PCE observed in practical applications of QDSCs is also examined, along with the potential reasons for this phenomenon.
期刊介绍:
Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including:
materials, chemistry, condensed matter physics
engineering, energy
life science, biology, medicine
atmospheric/environmental science, climate science
planetary science, astronomy, cosmology
method development, numerical methods, statistics