{"title":"Instance-dependent Label Distribution Estimation for Learning with Label Noise","authors":"Zehui Liao, Shishuai Hu, Yutong Xie, Yong Xia","doi":"10.1007/s11263-024-02299-x","DOIUrl":null,"url":null,"abstract":"<p>Noise transition matrix estimation is a promising approach for learning with label noise. It can infer clean posterior probabilities, known as Label Distribution (LD), based on noisy ones and reduce the impact of noisy labels. However, this estimation is challenging, since the ground truth labels are not always available. Most existing methods estimate a global noise transition matrix using either correctly labeled samples (anchor points) or detected reliable samples (pseudo anchor points). These methods heavily rely on the existence of anchor points or the quality of pseudo ones, and the global noise transition matrix can hardly provide accurate label transition information for each sample, since the label noise in real applications is mostly instance-dependent. To address these challenges, we propose an Instance-dependent Label Distribution Estimation (ILDE) method to learn from noisy labels for image classification. The method’s workflow has three major steps. First, we estimate each sample’s noisy posterior probability, supervised by noisy labels. Second, since mislabeling probability closely correlates with inter-class correlation, we compute the inter-class correlation matrix to estimate the noise transition matrix, bypassing the need for (pseudo) anchor points. Moreover, for a precise approximation of the instance-dependent noise transition matrix, we calculate the inter-class correlation matrix using only mini-batch samples rather than the entire training dataset. Third, we transform the noisy posterior probability into instance-dependent LD by multiplying it with the estimated noise transition matrix, using the resulting LD for enhanced supervision to prevent DCNNs from memorizing noisy labels. The proposed ILDE method has been evaluated against several state-of-the-art methods on two synthetic and three real-world noisy datasets. Our results indicate that the proposed ILDE method outperforms all competing methods, no matter whether the noise is synthetic or real noise.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"19 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02299-x","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Noise transition matrix estimation is a promising approach for learning with label noise. It can infer clean posterior probabilities, known as Label Distribution (LD), based on noisy ones and reduce the impact of noisy labels. However, this estimation is challenging, since the ground truth labels are not always available. Most existing methods estimate a global noise transition matrix using either correctly labeled samples (anchor points) or detected reliable samples (pseudo anchor points). These methods heavily rely on the existence of anchor points or the quality of pseudo ones, and the global noise transition matrix can hardly provide accurate label transition information for each sample, since the label noise in real applications is mostly instance-dependent. To address these challenges, we propose an Instance-dependent Label Distribution Estimation (ILDE) method to learn from noisy labels for image classification. The method’s workflow has three major steps. First, we estimate each sample’s noisy posterior probability, supervised by noisy labels. Second, since mislabeling probability closely correlates with inter-class correlation, we compute the inter-class correlation matrix to estimate the noise transition matrix, bypassing the need for (pseudo) anchor points. Moreover, for a precise approximation of the instance-dependent noise transition matrix, we calculate the inter-class correlation matrix using only mini-batch samples rather than the entire training dataset. Third, we transform the noisy posterior probability into instance-dependent LD by multiplying it with the estimated noise transition matrix, using the resulting LD for enhanced supervision to prevent DCNNs from memorizing noisy labels. The proposed ILDE method has been evaluated against several state-of-the-art methods on two synthetic and three real-world noisy datasets. Our results indicate that the proposed ILDE method outperforms all competing methods, no matter whether the noise is synthetic or real noise.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.