Chen Qiu, Yu Lu, Suyang Wu, Wenli Guo, Jiahao Ni, Jiyuan Song, Zichao Liu, Xiaoai Chang, Kai Wang, Peng Sun, Qian Zhang, Shufang Yang, Kai Li
{"title":"Blocking adipocyte YY1 decouples thermogenesis from beneficial metabolism by promoting spermidine production","authors":"Chen Qiu, Yu Lu, Suyang Wu, Wenli Guo, Jiahao Ni, Jiyuan Song, Zichao Liu, Xiaoai Chang, Kai Wang, Peng Sun, Qian Zhang, Shufang Yang, Kai Li","doi":"10.2337/db24-0501","DOIUrl":null,"url":null,"abstract":"The accumulation of mitochondria in thermogenic adipose tissue (i.e., brown and beige fat) increases energy expenditure, which can aid in alleviating obesity and metabolic disorders. However, recent studies have shown that knocking out key proteins required to maintain mitochondrial function inhibits the energy expenditure in thermogenic fat, and yet the knockout mice are unexpectedly protected from developing obesity or metabolic disorders when fed a high-fat diet (HFD). In the present study, non-biased sequencing-based screening revealed the importance of YY1 in the transcription of electron transport chain genes and the enhancement of mitochondrial function in thermogenic adipose tissue. Specifically, adipocyte YY1 null (YAKO) mice showed lower energy expenditure and were intolerant to cold stress. Interestingly, YAKO mice showed alleviation of HFD-induced metabolic disorders, which can be attributed to a suppression of adipose tissue inflammation. Metabolomic analysis revealed that blocking YY1 directed glucose metabolism toward lactate, enhanced the uptake of glutamine, and promoted the production of anti-inflammatory spermidine. Conversely, blocking spermidine production in YAKO mice reversed their resistance to HFD-induced disorders. Thus, although blocking adipocyte YY1 impairs the thermogenesis, it promotes spermidine production and alleviates adipose tissue inflammation, therefore leads to an uncoupling of adipose tissue energy expenditure from HFD-induced metabolic disorders.","PeriodicalId":11376,"journal":{"name":"Diabetes","volume":"82 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2337/db24-0501","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
The accumulation of mitochondria in thermogenic adipose tissue (i.e., brown and beige fat) increases energy expenditure, which can aid in alleviating obesity and metabolic disorders. However, recent studies have shown that knocking out key proteins required to maintain mitochondrial function inhibits the energy expenditure in thermogenic fat, and yet the knockout mice are unexpectedly protected from developing obesity or metabolic disorders when fed a high-fat diet (HFD). In the present study, non-biased sequencing-based screening revealed the importance of YY1 in the transcription of electron transport chain genes and the enhancement of mitochondrial function in thermogenic adipose tissue. Specifically, adipocyte YY1 null (YAKO) mice showed lower energy expenditure and were intolerant to cold stress. Interestingly, YAKO mice showed alleviation of HFD-induced metabolic disorders, which can be attributed to a suppression of adipose tissue inflammation. Metabolomic analysis revealed that blocking YY1 directed glucose metabolism toward lactate, enhanced the uptake of glutamine, and promoted the production of anti-inflammatory spermidine. Conversely, blocking spermidine production in YAKO mice reversed their resistance to HFD-induced disorders. Thus, although blocking adipocyte YY1 impairs the thermogenesis, it promotes spermidine production and alleviates adipose tissue inflammation, therefore leads to an uncoupling of adipose tissue energy expenditure from HFD-induced metabolic disorders.
期刊介绍:
Diabetes is a scientific journal that publishes original research exploring the physiological and pathophysiological aspects of diabetes mellitus. We encourage submissions of manuscripts pertaining to laboratory, animal, or human research, covering a wide range of topics. Our primary focus is on investigative reports investigating various aspects such as the development and progression of diabetes, along with its associated complications. We also welcome studies delving into normal and pathological pancreatic islet function and intermediary metabolism, as well as exploring the mechanisms of drug and hormone action from a pharmacological perspective. Additionally, we encourage submissions that delve into the biochemical and molecular aspects of both normal and abnormal biological processes.
However, it is important to note that we do not publish studies relating to diabetes education or the application of accepted therapeutic and diagnostic approaches to patients with diabetes mellitus. Our aim is to provide a platform for research that contributes to advancing our understanding of the underlying mechanisms and processes of diabetes.