{"title":"Revised bounds on local cosmic strings from NANOGrav observations","authors":"Jun'ya Kume and Mark Hindmarsh","doi":"10.1088/1475-7516/2024/12/001","DOIUrl":null,"url":null,"abstract":"In a recent paper, the NANOGrav collaboration studied new physics explanations of the observed pulsar timing residuals consistent with a stochastic gravitational wave background (SGWB) [1], including cosmic strings in the Nambu-Goto (NG) approximation. Analysing one of current models for the loop distribution, it was found that the cosmic string model is disfavored compared to other sources, for example, super massive black hole binaries (SMBHBs). When both SMBHB and cosmic string models are included in the analysis, an upper bound on a string tension Gμ≲ 10-10 was derived. However, the analysis did not accommodate results from cosmic string simulations in an underlying field theory, which indicate that at most a small fraction of string loops survive long enough to emit GW. Following and extending our previous study [2], we suppose that a fraction fNG of string loops follow NG dynamics and emit only GWs, and study the three different models of the loop distribution discussed in the LIGO-Virgo-KAGRA (LVK) collaboration analyses. We re-analyse the NANOGrav 15yrs data with our signal models by using the NANOGrav ENTERPRISE analysis code via the wrapper PTArcade. We find that loop distributions similar to LVK Model B and C yield higher Bayes factor than Model A analysed in the NANOGrav paper, as they can more easily accommodate a blue-tilted spectrum of the observed amplitude. Furthermore, because of the degeneracy of Gμ and fNG in determining the signal amplitude, our posterior distribution extends to higher values of Gμ, and in some cases the uppermost value of credible intervals is close to the Cosmic Microwave Background limit Gμ≲ 10-7. Hence, in addition to the pulsar timing array data, further information about the fraction of long-lived loops in a cosmic string network is required to constrain the string tension.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"22 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/12/001","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In a recent paper, the NANOGrav collaboration studied new physics explanations of the observed pulsar timing residuals consistent with a stochastic gravitational wave background (SGWB) [1], including cosmic strings in the Nambu-Goto (NG) approximation. Analysing one of current models for the loop distribution, it was found that the cosmic string model is disfavored compared to other sources, for example, super massive black hole binaries (SMBHBs). When both SMBHB and cosmic string models are included in the analysis, an upper bound on a string tension Gμ≲ 10-10 was derived. However, the analysis did not accommodate results from cosmic string simulations in an underlying field theory, which indicate that at most a small fraction of string loops survive long enough to emit GW. Following and extending our previous study [2], we suppose that a fraction fNG of string loops follow NG dynamics and emit only GWs, and study the three different models of the loop distribution discussed in the LIGO-Virgo-KAGRA (LVK) collaboration analyses. We re-analyse the NANOGrav 15yrs data with our signal models by using the NANOGrav ENTERPRISE analysis code via the wrapper PTArcade. We find that loop distributions similar to LVK Model B and C yield higher Bayes factor than Model A analysed in the NANOGrav paper, as they can more easily accommodate a blue-tilted spectrum of the observed amplitude. Furthermore, because of the degeneracy of Gμ and fNG in determining the signal amplitude, our posterior distribution extends to higher values of Gμ, and in some cases the uppermost value of credible intervals is close to the Cosmic Microwave Background limit Gμ≲ 10-7. Hence, in addition to the pulsar timing array data, further information about the fraction of long-lived loops in a cosmic string network is required to constrain the string tension.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.