Fabien Wehbe, Levi Adams, Jordan Babadoudou, Samantha Yuen, Yoon-Seong Kim, Yoshiaki Tanaka
{"title":"Inferring disease progressive stages in single-cell transcriptomics using a weakly-supervised deep learning approach","authors":"Fabien Wehbe, Levi Adams, Jordan Babadoudou, Samantha Yuen, Yoon-Seong Kim, Yoshiaki Tanaka","doi":"10.1101/gr.278812.123","DOIUrl":null,"url":null,"abstract":"Application of single-cell/nucleus genomic sequencing to patient-derived tissues offers potential solutions to delineate disease mechanisms in human. However, individual cells in patient-derived tissues are in different pathological stages, and hence such cellular variability impedes subsequent differential gene expression analyses. To overcome such heterogeneity issue, we present a novel deep learning approach, scIDST, that infers disease progressive levels of individual cells with weak supervision framework. The inferred disease progressive cells displayed significant differential expression of disease-relevant genes, which could not be detected by comparative analysis between patients and healthy donors. In addition, we demonstrated that pretrained models by scIDST are applicable to multiple independent data resources, and advantageous to infer cells related to certain disease risks and comorbidities. Taken together, scIDST offers a new strategy of single-cell sequencing analysis to identify bona fide disease-associated molecular features.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"32 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.278812.123","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Application of single-cell/nucleus genomic sequencing to patient-derived tissues offers potential solutions to delineate disease mechanisms in human. However, individual cells in patient-derived tissues are in different pathological stages, and hence such cellular variability impedes subsequent differential gene expression analyses. To overcome such heterogeneity issue, we present a novel deep learning approach, scIDST, that infers disease progressive levels of individual cells with weak supervision framework. The inferred disease progressive cells displayed significant differential expression of disease-relevant genes, which could not be detected by comparative analysis between patients and healthy donors. In addition, we demonstrated that pretrained models by scIDST are applicable to multiple independent data resources, and advantageous to infer cells related to certain disease risks and comorbidities. Taken together, scIDST offers a new strategy of single-cell sequencing analysis to identify bona fide disease-associated molecular features.
期刊介绍:
Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine.
Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.
New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.