Yongbo Liu, Xiuyun Sun, Qianlong Liu, Chi Han, Yu Rao
{"title":"A Dual-Target and Dual-Mechanism Design Strategy by Combining Inhibition and Degradation Together","authors":"Yongbo Liu, Xiuyun Sun, Qianlong Liu, Chi Han, Yu Rao","doi":"10.1021/jacs.4c11930","DOIUrl":null,"url":null,"abstract":"Glioblastoma, a highly aggressive brain tumor, lacks effective treatment with low 5 year survival rates. Urgency for new therapies is evident. Mammalian targets of rapamycin (mTOR) and G1 to S phase transition 1 gene (GSPT1) are overexpressed in glioblastoma, regulating vital cellular functions. Current mTOR inhibitors face challenges in clinical efficacy and drug resistance. Similarly, GSPT1-targeting therapies have not progressed of glioblastoma in clinical trials. Research studies suggested that combining mTOR inhibition with GSPT1 degradation may overcome resistance and enhance efficacy. We propose the concept of jointly implementing inhibition and degradation on different proteins, integrating the properties of inhibitors and degraders into the same molecule. Introducing YB-3–17, a novel bifunctional molecule, robustly inhibits mTOR and selectively degrades GSPT1. As a tool compound for proof-of-concept studies, YB-3–17 sharpens selectivity, avoiding off-target effects, and selectively induces GSPT1 degradation and mTOR inhibition, showing superior efficacy in tumor cell lines compared to that of standalone therapies. RNA-seq analysis highlights the advantages of YB-3-17 over mTOR inhibitor treatment. YB-3–17 can safely and effectively inhibit tumor growth in mice, offering a promising direction for precision treatment of glioblastoma, representing the first attempt to combine mTOR inhibition with GSPT1 degradation. This work also demonstrates that it is conceptually possible to successfully combine the properties of small molecule inhibitors and degraders into a single molecule, killing two birds with one stone.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"2 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c11930","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Glioblastoma, a highly aggressive brain tumor, lacks effective treatment with low 5 year survival rates. Urgency for new therapies is evident. Mammalian targets of rapamycin (mTOR) and G1 to S phase transition 1 gene (GSPT1) are overexpressed in glioblastoma, regulating vital cellular functions. Current mTOR inhibitors face challenges in clinical efficacy and drug resistance. Similarly, GSPT1-targeting therapies have not progressed of glioblastoma in clinical trials. Research studies suggested that combining mTOR inhibition with GSPT1 degradation may overcome resistance and enhance efficacy. We propose the concept of jointly implementing inhibition and degradation on different proteins, integrating the properties of inhibitors and degraders into the same molecule. Introducing YB-3–17, a novel bifunctional molecule, robustly inhibits mTOR and selectively degrades GSPT1. As a tool compound for proof-of-concept studies, YB-3–17 sharpens selectivity, avoiding off-target effects, and selectively induces GSPT1 degradation and mTOR inhibition, showing superior efficacy in tumor cell lines compared to that of standalone therapies. RNA-seq analysis highlights the advantages of YB-3-17 over mTOR inhibitor treatment. YB-3–17 can safely and effectively inhibit tumor growth in mice, offering a promising direction for precision treatment of glioblastoma, representing the first attempt to combine mTOR inhibition with GSPT1 degradation. This work also demonstrates that it is conceptually possible to successfully combine the properties of small molecule inhibitors and degraders into a single molecule, killing two birds with one stone.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.