Whispers from the quantum core: the ringdown of semiclassical stars

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Julio Arrechea, Stefano Liberati and Vania Vellucci
{"title":"Whispers from the quantum core: the ringdown of semiclassical stars","authors":"Julio Arrechea, Stefano Liberati and Vania Vellucci","doi":"10.1088/1475-7516/2024/12/004","DOIUrl":null,"url":null,"abstract":"This investigation delves into the ringdown signals produced by semiclassical stars, which are ultra-compact, regular solutions of the Einstein equations incorporating stress-energy contributions from quantum vacuum polarization. These stars exhibit an approximately Schwarzschild exterior and an interior composed of a constant-density classical fluid and a cloud of vacuum polarization. By adjusting their compactness and density, we can alter the internal structure of these stars without modifying the exterior. This adaptability enables us to examine the sensitivity of the ringdown signal to the innermost regions of the emitting object and to compare it with similar geometries that differ substantially only at the core. Our results indicate that echo signals are intrinsically linked to the presence of stable light rings and can be very sensitive to the internal structure of the emitting object. This point was previously overlooked, either due to the imposition of reflective boundary conditions at the stellar surface or due to the assumption of low curvature interior geometries. Specifically, for stellar-sized semiclassical stars, we find that the interior travel time is sufficiently prolonged to render the echoes effectively unobservable. These findings underscore the potential efficacy of ultra-compact objects as black hole mimickers and emphasize that any phenomenological constraints on such objects necessitate a detailed understanding of their specific properties and core structure.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"13 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/12/004","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This investigation delves into the ringdown signals produced by semiclassical stars, which are ultra-compact, regular solutions of the Einstein equations incorporating stress-energy contributions from quantum vacuum polarization. These stars exhibit an approximately Schwarzschild exterior and an interior composed of a constant-density classical fluid and a cloud of vacuum polarization. By adjusting their compactness and density, we can alter the internal structure of these stars without modifying the exterior. This adaptability enables us to examine the sensitivity of the ringdown signal to the innermost regions of the emitting object and to compare it with similar geometries that differ substantially only at the core. Our results indicate that echo signals are intrinsically linked to the presence of stable light rings and can be very sensitive to the internal structure of the emitting object. This point was previously overlooked, either due to the imposition of reflective boundary conditions at the stellar surface or due to the assumption of low curvature interior geometries. Specifically, for stellar-sized semiclassical stars, we find that the interior travel time is sufficiently prolonged to render the echoes effectively unobservable. These findings underscore the potential efficacy of ultra-compact objects as black hole mimickers and emphasize that any phenomenological constraints on such objects necessitate a detailed understanding of their specific properties and core structure.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信