Joining Natural and Synthetic DNA Using Biversal Nucleotides: Efficient Sequencing of Six-Nucleotide DNA

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bang Wang, Hyo-Joong Kim, Kevin M. Bradley, Cen Chen, Chris McLendon, Zunyi Yang, Steven A. Benner
{"title":"Joining Natural and Synthetic DNA Using Biversal Nucleotides: Efficient Sequencing of Six-Nucleotide DNA","authors":"Bang Wang, Hyo-Joong Kim, Kevin M. Bradley, Cen Chen, Chris McLendon, Zunyi Yang, Steven A. Benner","doi":"10.1021/jacs.4c11043","DOIUrl":null,"url":null,"abstract":"By rearranging hydrogen bond donor and acceptor groups within a standard Watson–Crick geometry, DNA can add eight independently replicable nucleotides forming four additional not found in standard Terran DNA. For many applications, the orthogonal pairing of standard and nonstandard pairs offers a key advantage. However, other applications require standard and nonstandard nucleotides to communicate with each other. This is especially true when seeking to recruit high-throughput instruments (e.g., Illumina), designed to sequence standard 4-nucleotide DNA, to sequence DNA that includes added nucleotides. For this purpose, PCR workflows are needed to replace nonstandard nucleotides in (for example) a 6-letter DNA sequence by defined mixtures of standard nucleotides built from 4 nucleotides. High-throughput sequencing can then report the sequences of those mixtures to bioinformatic alignment tools, which infer the original 6-nucleotide sequence by analysis of the mixtures. Unfortunately, the intrinsic orthogonality of standard and nonstandard nucleotides often demand polymerases that violate pairing biophysics to do this replacement, leading to inefficiencies in this “transliteration” process. Thus, laboratory <i>in vitro</i> evolution (LIVE) using “anthropogenic evolvable genetic information systems” (AEGIS), an important “consumer” of new sequencing tools, has been slow to be democratized; robust sequencing is needed to identify the AegisBodies and AegisZymes that AEGIS-LIVE delivers. This work introduces a new way to connect synthetic and standard molecular biology: <b>biversal nucleotides</b>. In an example presented here, a pyrimidine analogue (pyridine-2-one, <b>y</b>) pairs with Watson–Crick geometry to both a nonstandard base (2-amino-8-imidazo-[1,2<i>a</i>]-1,3,5-triazin-[8<i>H</i>]-4-one, <b>P</b>, the Watson–Crick partner of 6-amino-5-nitro-[1<i>H</i>]-pyridin-2-one, <b>Z</b>) and a base that completes the Watson–Crick hydrogen bond pattern (2-amino-2′-deoxyadenosine, <b>amA</b>). PCR amplification of GACT<b>ZP</b> DNA with d<b>y</b>TP delivers products where <b>Z</b>:<b>P</b> pairs are cleanly transliterated to A:T pairs. In parallel, PCR of the same GACT<b>ZP</b> sample at higher pH delivers products where <b>Z</b>:<b>P</b> pairs are cleanly transliterated to C:G pairs. By allowing robust sequencing of 6-letter GACT<b>ZP</b> DNA, this workflow will help democratize AEGIS-LIVE. Further, other implementations of the biversal concept can enable communication across and between standard DNA and synthetic DNA more generally.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"28 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c11043","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

By rearranging hydrogen bond donor and acceptor groups within a standard Watson–Crick geometry, DNA can add eight independently replicable nucleotides forming four additional not found in standard Terran DNA. For many applications, the orthogonal pairing of standard and nonstandard pairs offers a key advantage. However, other applications require standard and nonstandard nucleotides to communicate with each other. This is especially true when seeking to recruit high-throughput instruments (e.g., Illumina), designed to sequence standard 4-nucleotide DNA, to sequence DNA that includes added nucleotides. For this purpose, PCR workflows are needed to replace nonstandard nucleotides in (for example) a 6-letter DNA sequence by defined mixtures of standard nucleotides built from 4 nucleotides. High-throughput sequencing can then report the sequences of those mixtures to bioinformatic alignment tools, which infer the original 6-nucleotide sequence by analysis of the mixtures. Unfortunately, the intrinsic orthogonality of standard and nonstandard nucleotides often demand polymerases that violate pairing biophysics to do this replacement, leading to inefficiencies in this “transliteration” process. Thus, laboratory in vitro evolution (LIVE) using “anthropogenic evolvable genetic information systems” (AEGIS), an important “consumer” of new sequencing tools, has been slow to be democratized; robust sequencing is needed to identify the AegisBodies and AegisZymes that AEGIS-LIVE delivers. This work introduces a new way to connect synthetic and standard molecular biology: biversal nucleotides. In an example presented here, a pyrimidine analogue (pyridine-2-one, y) pairs with Watson–Crick geometry to both a nonstandard base (2-amino-8-imidazo-[1,2a]-1,3,5-triazin-[8H]-4-one, P, the Watson–Crick partner of 6-amino-5-nitro-[1H]-pyridin-2-one, Z) and a base that completes the Watson–Crick hydrogen bond pattern (2-amino-2′-deoxyadenosine, amA). PCR amplification of GACTZP DNA with dyTP delivers products where Z:P pairs are cleanly transliterated to A:T pairs. In parallel, PCR of the same GACTZP sample at higher pH delivers products where Z:P pairs are cleanly transliterated to C:G pairs. By allowing robust sequencing of 6-letter GACTZP DNA, this workflow will help democratize AEGIS-LIVE. Further, other implementations of the biversal concept can enable communication across and between standard DNA and synthetic DNA more generally.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信