Synthesis, Biological Evaluation and in Silico Studies of Novel Urea/Thiourea Derivatives of Lenalidomide

IF 3.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fatih Tok, Burçin İrem Abas, Faika Başoğlu, Özge Çevik, Sevgi Karakuş, Abdulilah Ece
{"title":"Synthesis, Biological Evaluation and in Silico Studies of Novel Urea/Thiourea Derivatives of Lenalidomide","authors":"Fatih Tok,&nbsp;Burçin İrem Abas,&nbsp;Faika Başoğlu,&nbsp;Özge Çevik,&nbsp;Sevgi Karakuş,&nbsp;Abdulilah Ece","doi":"10.1002/jbt.70079","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Designing new compounds from existing chemotherapeutic drugs to enhance inhibitory effects on tumor cells while overcoming multidrug resistance is one of the important strategies for new drug discovery in medicinal chemistry. A new series of urea and thiourea derivatives based on Lenalidomide as potential anticancer agents have been designed and synthesized. <i>In vitro</i> anticancer activity assay against Caki cancer cells and HUVEC endothelial cells revealed that 1-(4-methylphenyl)-3-[2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl]urea (<b>11</b>) exhibited the highest anticancer activity and selectivity in the series with IC<sub>50</sub> values of 9.88 and 179.03 µM, respectively. Among the compounds, <b>11</b> showed significant HDAC1 inhibiton of 68.02 ± 2.44% at 10 µM concentration. TGF-β, Bax, Bcl-2 protein levels and scratch assay were analyzed in Caki cells. As a result, compound <b>11</b> induced apoptosis in Caki cells. In this study, it has been demonstrated that compound <b>11</b> can be a lead compound for further detailed investigation in renal cancer treatment. Through molecular docking studies, it was determined that the most active compound, <b>11</b>, forms stable interactions with key residues in the enzyme's active site, particularly engaging in hydrogen bonds with GLY149 and coordinating with the zinc ion in the HDAC1 active site. These interactions are crucial for the observed inhibitory activity. Molecular dynamics simulation revealed the binding event of the most active compound with class I histone deacetylase and the stability of the complex in a biological environment.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"38 12","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70079","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Designing new compounds from existing chemotherapeutic drugs to enhance inhibitory effects on tumor cells while overcoming multidrug resistance is one of the important strategies for new drug discovery in medicinal chemistry. A new series of urea and thiourea derivatives based on Lenalidomide as potential anticancer agents have been designed and synthesized. In vitro anticancer activity assay against Caki cancer cells and HUVEC endothelial cells revealed that 1-(4-methylphenyl)-3-[2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl]urea (11) exhibited the highest anticancer activity and selectivity in the series with IC50 values of 9.88 and 179.03 µM, respectively. Among the compounds, 11 showed significant HDAC1 inhibiton of 68.02 ± 2.44% at 10 µM concentration. TGF-β, Bax, Bcl-2 protein levels and scratch assay were analyzed in Caki cells. As a result, compound 11 induced apoptosis in Caki cells. In this study, it has been demonstrated that compound 11 can be a lead compound for further detailed investigation in renal cancer treatment. Through molecular docking studies, it was determined that the most active compound, 11, forms stable interactions with key residues in the enzyme's active site, particularly engaging in hydrogen bonds with GLY149 and coordinating with the zinc ion in the HDAC1 active site. These interactions are crucial for the observed inhibitory activity. Molecular dynamics simulation revealed the binding event of the most active compound with class I histone deacetylase and the stability of the complex in a biological environment.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
2.80%
发文量
277
审稿时长
6-12 weeks
期刊介绍: The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信