Lei Wang , Zhihua Dong , Bin Jiang , Cuihong Wang , Xiaoying Qian , Levente Vitos , Fusheng Pan
{"title":"Influence of non-rare earth elements on basal stacking fault energy of Mg binary alloys in solid solution","authors":"Lei Wang , Zhihua Dong , Bin Jiang , Cuihong Wang , Xiaoying Qian , Levente Vitos , Fusheng Pan","doi":"10.1016/j.scriptamat.2024.116479","DOIUrl":null,"url":null,"abstract":"<div><div>Using first principle alloy theory, we calculate the basal stacking fault energies as a function of chemical composition for a series of Mg binary alloys by accounting for the chemical disorder in solid solution. We show that while the basal stacking fault energies significantly increase with the addition of Co, Ni, Ag, and Li, they obviously decline upon alloying with Sn, Y, Ca, and Al. In contrast, Zn and Ti exhibit negligible influence on the basal stacking fault energy of I<sub>1</sub> and I<sub>2</sub> fault. The varied influence of alloying species on basal stacking fault energies are demonstrated to predominately determined by the volume- and composition-dependent relative phase stability between face-centered cubic and hexagonal close-packed structure. The influence of alloy species predicted in solid solution are obviously different from those computed for segregated ones, underlining the significance of chemical disorder to the intrinsic energy barriers of Mg solid solutions.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"257 ","pages":"Article 116479"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646224005141","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Using first principle alloy theory, we calculate the basal stacking fault energies as a function of chemical composition for a series of Mg binary alloys by accounting for the chemical disorder in solid solution. We show that while the basal stacking fault energies significantly increase with the addition of Co, Ni, Ag, and Li, they obviously decline upon alloying with Sn, Y, Ca, and Al. In contrast, Zn and Ti exhibit negligible influence on the basal stacking fault energy of I1 and I2 fault. The varied influence of alloying species on basal stacking fault energies are demonstrated to predominately determined by the volume- and composition-dependent relative phase stability between face-centered cubic and hexagonal close-packed structure. The influence of alloy species predicted in solid solution are obviously different from those computed for segregated ones, underlining the significance of chemical disorder to the intrinsic energy barriers of Mg solid solutions.
期刊介绍:
Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.