{"title":"Modeling and testing for endpoint-inflated count time series with bounded support","authors":"Yao Kang , Xiaojing Fan , Jie Zhang , Ying Tang","doi":"10.1016/j.jspi.2024.106248","DOIUrl":null,"url":null,"abstract":"<div><div>Count time series with bounded support frequently exhibit binomial overdispersion, zero inflation and right-endpoint inflation in practical scenarios. Numerous models have been proposed for the analysis of bounded count time series with binomial overdispersion and zero inflation, yet right-endpoint inflation has received comparatively less attention. To better capture these features, this article introduces three versions of extended first-order binomial autoregressive (BAR(1)) models with endpoint inflation. Corresponding stochastic properties of the new models are investigated and model parameters are estimated by the conditional maximum likelihood and quasi-maximum likelihood methods. A binomial right-endpoint inflation index is also constructed and further used to test whether the data set has endpoint-inflated characteristic with respect to a BAR(1) process. Finally, the proposed models are applied to two real data examples. Firstly, we illustrate the usefulness of the proposed models through an application to the voting data on supporting interest rate changes during consecutive monthly meetings of the Monetary Policy Council at the National Bank of Poland. Then, we apply the proposed models to the number of police stations that received at least one drunk driving report per month. The results of the two real data examples indicate that the new models have significant advantages in terms of fitting performance for the bounded count time series with endpoint inflation.</div></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"237 ","pages":"Article 106248"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824001058","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Count time series with bounded support frequently exhibit binomial overdispersion, zero inflation and right-endpoint inflation in practical scenarios. Numerous models have been proposed for the analysis of bounded count time series with binomial overdispersion and zero inflation, yet right-endpoint inflation has received comparatively less attention. To better capture these features, this article introduces three versions of extended first-order binomial autoregressive (BAR(1)) models with endpoint inflation. Corresponding stochastic properties of the new models are investigated and model parameters are estimated by the conditional maximum likelihood and quasi-maximum likelihood methods. A binomial right-endpoint inflation index is also constructed and further used to test whether the data set has endpoint-inflated characteristic with respect to a BAR(1) process. Finally, the proposed models are applied to two real data examples. Firstly, we illustrate the usefulness of the proposed models through an application to the voting data on supporting interest rate changes during consecutive monthly meetings of the Monetary Policy Council at the National Bank of Poland. Then, we apply the proposed models to the number of police stations that received at least one drunk driving report per month. The results of the two real data examples indicate that the new models have significant advantages in terms of fitting performance for the bounded count time series with endpoint inflation.
期刊介绍:
The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists.
We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.