RTA: A reinforcement learning-based temporal knowledge graph question answering model

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yu Zhu , Tinghuai Ma , Shengjie Sun , Huan Rong , Yexin Bian , Kai Huang
{"title":"RTA: A reinforcement learning-based temporal knowledge graph question answering model","authors":"Yu Zhu ,&nbsp;Tinghuai Ma ,&nbsp;Shengjie Sun ,&nbsp;Huan Rong ,&nbsp;Yexin Bian ,&nbsp;Kai Huang","doi":"10.1016/j.neucom.2024.128994","DOIUrl":null,"url":null,"abstract":"<div><div>Temporal Knowledge Graph Question Answering (TKGQA) is crucial research, focusing on finding an entity or a timestamp to answer temporal questions in the corresponding temporal knowledge graph. Currently, the main challenge in the temporal KGQA task is answering complex temporal questions, often necessitating complex multi-hop temporal reasoning in the TKG. In this paper, we propose a method for the TKGQA task called Reinforcement learning Temporal knowledge graph question <strong>A</strong>nswering (<strong>RTA</strong>). First, in the question understanding stage, our model extracts context information to select topic entities of the given question, which can effectively deal with scenarios involving multiple entities in complex temporal questions. Furthermore, reasoning complexity escalates significantly with complex temporal questions, as varying timestamps alter the relations between entities. Therefore, we introduce reinforcement learning into the reasoning process. In the policy network, a dynamic path-matching module is specifically included to aggregate the features of relational paths to effectively capture the dynamic changes of the relations between entities on the reasoning paths. At the same time, the weights are calculated to obtain the degree of attention of each candidate action. Then the score of each candidate action is obtained through a weighted summation mechanism which helps the agent learn the optimal path reasoning policy for effective exploration. Finally, we evaluate our method on the CRONQUESTIONS dataset and validate its superiority over all baseline methods. Specifically, our approach proves effective in handling complex temporal questions.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"617 ","pages":"Article 128994"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092523122401765X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Temporal Knowledge Graph Question Answering (TKGQA) is crucial research, focusing on finding an entity or a timestamp to answer temporal questions in the corresponding temporal knowledge graph. Currently, the main challenge in the temporal KGQA task is answering complex temporal questions, often necessitating complex multi-hop temporal reasoning in the TKG. In this paper, we propose a method for the TKGQA task called Reinforcement learning Temporal knowledge graph question Answering (RTA). First, in the question understanding stage, our model extracts context information to select topic entities of the given question, which can effectively deal with scenarios involving multiple entities in complex temporal questions. Furthermore, reasoning complexity escalates significantly with complex temporal questions, as varying timestamps alter the relations between entities. Therefore, we introduce reinforcement learning into the reasoning process. In the policy network, a dynamic path-matching module is specifically included to aggregate the features of relational paths to effectively capture the dynamic changes of the relations between entities on the reasoning paths. At the same time, the weights are calculated to obtain the degree of attention of each candidate action. Then the score of each candidate action is obtained through a weighted summation mechanism which helps the agent learn the optimal path reasoning policy for effective exploration. Finally, we evaluate our method on the CRONQUESTIONS dataset and validate its superiority over all baseline methods. Specifically, our approach proves effective in handling complex temporal questions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信