Prototype matching-based meta-learning model for few-shot fault diagnosis of mechanical system

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Lin Lin, Sihao Zhang, Song Fu, Yikun Liu, Shiwei Suo, Guolei Hu
{"title":"Prototype matching-based meta-learning model for few-shot fault diagnosis of mechanical system","authors":"Lin Lin,&nbsp;Sihao Zhang,&nbsp;Song Fu,&nbsp;Yikun Liu,&nbsp;Shiwei Suo,&nbsp;Guolei Hu","doi":"10.1016/j.neucom.2024.129012","DOIUrl":null,"url":null,"abstract":"<div><div>The efficacy of advanced deep-learning diagnostic methods is contingent mainly upon sufficient trainable data for each fault category. However, gathering ample data in real-world scenarios is often challenging, rendering these deep-learning techniques ineffective. This paper introduces a novel Prototype Matching-based Meta-Learning (PMML) approach to address the few-shot fault diagnosis under constrained data conditions. Initially, the PMML’s feature extractor is meta-trained within the Model-Agnostic Meta-Learning framework, utilizing multiple fault classification tasks from known operational conditions in the source domain to acquire prior meta-knowledge for fault diagnosis. Subsequently, the trained feature extractor is employed to derive meta-features from few-shot samples in the target domain, and metric learning is conducted to facilitate swift and precise few-shot fault diagnosis, leveraging meta-knowledge and similarity information across sample sets. Moreover, instead of utilizing all target domain samples, the prototype of each fault category is used to capture similarity information between support and query samples. Concurrently, BiLSTM is employed to selectively embed the meta-feature prototype, enabling the extraction of more distinguishable metric features for enhanced metric learning. Finally, the effectiveness of the proposed PMML is validated through a series of comparative experiments on two fault datasets, demonstrating its outstanding performance in addressing both zero-shot and few-shot fault diagnosis challenges.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"617 ","pages":"Article 129012"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224017831","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The efficacy of advanced deep-learning diagnostic methods is contingent mainly upon sufficient trainable data for each fault category. However, gathering ample data in real-world scenarios is often challenging, rendering these deep-learning techniques ineffective. This paper introduces a novel Prototype Matching-based Meta-Learning (PMML) approach to address the few-shot fault diagnosis under constrained data conditions. Initially, the PMML’s feature extractor is meta-trained within the Model-Agnostic Meta-Learning framework, utilizing multiple fault classification tasks from known operational conditions in the source domain to acquire prior meta-knowledge for fault diagnosis. Subsequently, the trained feature extractor is employed to derive meta-features from few-shot samples in the target domain, and metric learning is conducted to facilitate swift and precise few-shot fault diagnosis, leveraging meta-knowledge and similarity information across sample sets. Moreover, instead of utilizing all target domain samples, the prototype of each fault category is used to capture similarity information between support and query samples. Concurrently, BiLSTM is employed to selectively embed the meta-feature prototype, enabling the extraction of more distinguishable metric features for enhanced metric learning. Finally, the effectiveness of the proposed PMML is validated through a series of comparative experiments on two fault datasets, demonstrating its outstanding performance in addressing both zero-shot and few-shot fault diagnosis challenges.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信