Improving generalization performance of adaptive gradient method via bounded step sizes

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yangchuan Wang , Lianhong Ding , Peng Shi , Juntao Li , Ruiping Yuan
{"title":"Improving generalization performance of adaptive gradient method via bounded step sizes","authors":"Yangchuan Wang ,&nbsp;Lianhong Ding ,&nbsp;Peng Shi ,&nbsp;Juntao Li ,&nbsp;Ruiping Yuan","doi":"10.1016/j.neucom.2024.128966","DOIUrl":null,"url":null,"abstract":"<div><div>While adaptive gradient methods such as Adam have been widely used in the training of deep neural networks, a recent study has provided a synthetic function that shows the non-convergence problem of Adam. This issue stems from the existence of extreme gradients and the mismatch between the first and second moments. Several adaptive optimizers have been continuously developed. However, designing a fast optimizer with excellent generalization capability is still challenging. We propose an adaptive method with bounded step sizes, named AdaBS, which removes the extreme step sizes and ensures that it appropriately adjusts adaptive step sizes to mitigate the over-adaptation of step sizes in Adam. In particular, AdaBS effectively clips step sizes that are too large or too small by using two static bounds with a predetermined boundary to control updates. When determining the step size, static bound clipping will be used if the preconditioner is outside the modest boundary, and vanilla Adam will be used if the preconditioner is inside the boundary. AdaBS establishes a trust region around the basic step size and obtains benefits of both Adam and SGD, i.e. fast convergence and better generalization. Finally, we conduct extensive experiments on a variety of practical tasks with benchmark datasets, including image classification and modeling language tasks. Empirical results demonstrate AdaBS’s promising performance with remarkably fast convergence, superior generalization, and robustness.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"617 ","pages":"Article 128966"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224017375","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

While adaptive gradient methods such as Adam have been widely used in the training of deep neural networks, a recent study has provided a synthetic function that shows the non-convergence problem of Adam. This issue stems from the existence of extreme gradients and the mismatch between the first and second moments. Several adaptive optimizers have been continuously developed. However, designing a fast optimizer with excellent generalization capability is still challenging. We propose an adaptive method with bounded step sizes, named AdaBS, which removes the extreme step sizes and ensures that it appropriately adjusts adaptive step sizes to mitigate the over-adaptation of step sizes in Adam. In particular, AdaBS effectively clips step sizes that are too large or too small by using two static bounds with a predetermined boundary to control updates. When determining the step size, static bound clipping will be used if the preconditioner is outside the modest boundary, and vanilla Adam will be used if the preconditioner is inside the boundary. AdaBS establishes a trust region around the basic step size and obtains benefits of both Adam and SGD, i.e. fast convergence and better generalization. Finally, we conduct extensive experiments on a variety of practical tasks with benchmark datasets, including image classification and modeling language tasks. Empirical results demonstrate AdaBS’s promising performance with remarkably fast convergence, superior generalization, and robustness.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信