Luheng Jia , Haoqiang Ren , Zuhai Zhang , Li Song , Kebin Jia
{"title":"Visual information fidelity based frame level rate control for H.265/HEVC","authors":"Luheng Jia , Haoqiang Ren , Zuhai Zhang , Li Song , Kebin Jia","doi":"10.1016/j.image.2024.117245","DOIUrl":null,"url":null,"abstract":"<div><div>Rate control in video coding seeks for various trade-off between bitrate and reconstruction quality, which is closely tied to image quality assessment. The widely used measurement of mean squared error (MSE) is inadequate in describing human visual characteristics, therefore, rate control algorithms based on MSE often fail to deliver optimal visual quality. To address this issue, we propose a frame level rate control algorithm based on a simplified version of visual information fidelity (VIF) as the quality assessment criterion to improve coding efficiency. Firstly, we simplify the VIF and establish its relationship with MSE, which reduce the computational complexity to make it possible for VIF to be used in video coding framework. Then we establish the relationship between VIF-based <span><math><mi>λ</mi></math></span> and MSE-based <span><math><mi>λ</mi></math></span> for <span><math><mi>λ</mi></math></span>-domain rate control including bit allocation and parameter adjustment. Moreover, using VIF-based <span><math><mi>λ</mi></math></span> directly integrates VIF-based distortion into the MSE-based rate–distortion optimized coding framework. Experimental results demonstrate that the coding efficiency of the proposed method outperforms the default frame-level rate control algorithms under distortion metrics of PSNR, SSIM, and VMAF by 3.4<span><math><mtext>%</mtext></math></span>, 4.0<span><math><mtext>%</mtext></math></span> and 3.3<span><math><mtext>%</mtext></math></span> in average. Furthermore, the proposed method reduces the quality fluctuation of the reconstructed video at high bitrate range and improves the bitrate accuracy under hierarchical configuration .</div></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"131 ","pages":"Article 117245"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524001462","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Rate control in video coding seeks for various trade-off between bitrate and reconstruction quality, which is closely tied to image quality assessment. The widely used measurement of mean squared error (MSE) is inadequate in describing human visual characteristics, therefore, rate control algorithms based on MSE often fail to deliver optimal visual quality. To address this issue, we propose a frame level rate control algorithm based on a simplified version of visual information fidelity (VIF) as the quality assessment criterion to improve coding efficiency. Firstly, we simplify the VIF and establish its relationship with MSE, which reduce the computational complexity to make it possible for VIF to be used in video coding framework. Then we establish the relationship between VIF-based and MSE-based for -domain rate control including bit allocation and parameter adjustment. Moreover, using VIF-based directly integrates VIF-based distortion into the MSE-based rate–distortion optimized coding framework. Experimental results demonstrate that the coding efficiency of the proposed method outperforms the default frame-level rate control algorithms under distortion metrics of PSNR, SSIM, and VMAF by 3.4, 4.0 and 3.3 in average. Furthermore, the proposed method reduces the quality fluctuation of the reconstructed video at high bitrate range and improves the bitrate accuracy under hierarchical configuration .
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.