Graph convolutional network for fast video summarization in compressed domain

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chia-Hung Yeh , Chih-Ming Lien , Zhi-Xiang Zhan , Feng-Hsu Tsai , Mei-Juan Chen
{"title":"Graph convolutional network for fast video summarization in compressed domain","authors":"Chia-Hung Yeh ,&nbsp;Chih-Ming Lien ,&nbsp;Zhi-Xiang Zhan ,&nbsp;Feng-Hsu Tsai ,&nbsp;Mei-Juan Chen","doi":"10.1016/j.neucom.2024.128945","DOIUrl":null,"url":null,"abstract":"<div><div>Video summarization is the process of generating a concise and representative summary of a video by selecting its most important frames. It plays a vital role in the video streaming industry, allowing users to quickly understand the overall content of a video without watching it in its entirety. Most existing video summarization methods require fully decoding the video stream and extracting the features with a pre-trained deep learning model in the pixel domain, which is time-consuming and computationally expensive. To address this issue, this paper proposes a novel method called Graph Convolutional Network-based Compressed-domain Video Summarization (GCNCVS), which directly exploits the compressed-domain information and leverages graph convolutional network to learn temporal relationships between frames, thereby enhancing its ability to capture contextual and valuable information when generating summarized videos. To evaluate the performance of GCNCVS, we conduct experiments on two benchmark datasets, SumMe and TVSum. Experimental results demonstrate that our method outperforms existing methods, achieving an average F-score of 53.5% on the SumMe dataset and 72.3% on the TVSum dataset. Additionally, the proposed method shows Kendall's τ correlation coefficient of 0.157 and Spearman's ρ correlation coefficient of 0.205 on the TVSum dataset. Our method also significantly reduces computational time, which enhances the feasibility of video summarization in video streaming environments.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"617 ","pages":"Article 128945"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224017168","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Video summarization is the process of generating a concise and representative summary of a video by selecting its most important frames. It plays a vital role in the video streaming industry, allowing users to quickly understand the overall content of a video without watching it in its entirety. Most existing video summarization methods require fully decoding the video stream and extracting the features with a pre-trained deep learning model in the pixel domain, which is time-consuming and computationally expensive. To address this issue, this paper proposes a novel method called Graph Convolutional Network-based Compressed-domain Video Summarization (GCNCVS), which directly exploits the compressed-domain information and leverages graph convolutional network to learn temporal relationships between frames, thereby enhancing its ability to capture contextual and valuable information when generating summarized videos. To evaluate the performance of GCNCVS, we conduct experiments on two benchmark datasets, SumMe and TVSum. Experimental results demonstrate that our method outperforms existing methods, achieving an average F-score of 53.5% on the SumMe dataset and 72.3% on the TVSum dataset. Additionally, the proposed method shows Kendall's τ correlation coefficient of 0.157 and Spearman's ρ correlation coefficient of 0.205 on the TVSum dataset. Our method also significantly reduces computational time, which enhances the feasibility of video summarization in video streaming environments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信