Xi Luo , Mingyang Zhang , Yi Han , Ran Yan , Shuaian Wang
{"title":"Ship fuel consumption prediction based on transfer learning: Models and applications","authors":"Xi Luo , Mingyang Zhang , Yi Han , Ran Yan , Shuaian Wang","doi":"10.1016/j.engappai.2024.109769","DOIUrl":null,"url":null,"abstract":"<div><div>Data-driven fuel consumption rate (FCR) prediction models largely depend on the amount of training data, which can be scarce for new ships with limited operating time. To tackle this issue, we implement three transfer learning strategies to leverage knowledge from another seven container ships to construct artificial neural network (ANN)-based FCR prediction models for a target ship with limited data. Numerical experiments reveal that the ANN models incorporating the three transfer strategies outperform the model trained solely on the target ship data, reducing mean absolute percentage error by 12.57%, 6.44%, and 16.03%, respectively. This study also investigates the impacts of target dataset size on the performance of transfer strategies using ship FCR prediction as an example, revealing that the smaller amount of available data, the greater improvement in prediction accuracy using the transfer strategy. These insights contribute to the development of effective operational solutions for enhancing ship energy efficiency and promoting sustainable shipping practices.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"141 ","pages":"Article 109769"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624019286","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Data-driven fuel consumption rate (FCR) prediction models largely depend on the amount of training data, which can be scarce for new ships with limited operating time. To tackle this issue, we implement three transfer learning strategies to leverage knowledge from another seven container ships to construct artificial neural network (ANN)-based FCR prediction models for a target ship with limited data. Numerical experiments reveal that the ANN models incorporating the three transfer strategies outperform the model trained solely on the target ship data, reducing mean absolute percentage error by 12.57%, 6.44%, and 16.03%, respectively. This study also investigates the impacts of target dataset size on the performance of transfer strategies using ship FCR prediction as an example, revealing that the smaller amount of available data, the greater improvement in prediction accuracy using the transfer strategy. These insights contribute to the development of effective operational solutions for enhancing ship energy efficiency and promoting sustainable shipping practices.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.