Enhancing camouflaged object detection through contrastive learning and data augmentation techniques

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Cunhan Guo , Heyan Huang
{"title":"Enhancing camouflaged object detection through contrastive learning and data augmentation techniques","authors":"Cunhan Guo ,&nbsp;Heyan Huang","doi":"10.1016/j.engappai.2024.109703","DOIUrl":null,"url":null,"abstract":"<div><div>Camouflaged object detection (COD) aims to locate and segment objects that blend into their surroundings, presenting significant challenges due to the high similarity between the objects and their background. This work introduces a novel approach, Contrastive Learning with Augmented Data (CLAD), which enhances COD performance by leveraging contrastive learning and data augmentation. Our method formulates a simplified task by placing camouflaged objects in new environments, creating positive and negative samples for contrast learning. This process strengthens the model’s ability to differentiate camouflaged objects from complex backgrounds. Furthermore, we introduce a concatenated feature enhancement module to integrate and enrich multi-scale features, improving the overall expressive power of the model. Extensive experiments on four benchmark datasets demonstrate that CLAD outperforms state-of-the-art COD methods, and its effectiveness extends to salient object detection tasks, achieving competitive results across multiple metrics.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"141 ","pages":"Article 109703"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095219762401861X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Camouflaged object detection (COD) aims to locate and segment objects that blend into their surroundings, presenting significant challenges due to the high similarity between the objects and their background. This work introduces a novel approach, Contrastive Learning with Augmented Data (CLAD), which enhances COD performance by leveraging contrastive learning and data augmentation. Our method formulates a simplified task by placing camouflaged objects in new environments, creating positive and negative samples for contrast learning. This process strengthens the model’s ability to differentiate camouflaged objects from complex backgrounds. Furthermore, we introduce a concatenated feature enhancement module to integrate and enrich multi-scale features, improving the overall expressive power of the model. Extensive experiments on four benchmark datasets demonstrate that CLAD outperforms state-of-the-art COD methods, and its effectiveness extends to salient object detection tasks, achieving competitive results across multiple metrics.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信