How closely do ecosystem services and life cycle assessment frameworks concur when evaluating contrasting animal-production systems with ruminant or monogastric species?
IF 4 2区 农林科学Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE
F. Joly , P. Roche , M. Fossey , A. Rebeaud , J. Dewulf , H.M.G. van der Werf , L. Boone
{"title":"How closely do ecosystem services and life cycle assessment frameworks concur when evaluating contrasting animal-production systems with ruminant or monogastric species?","authors":"F. Joly , P. Roche , M. Fossey , A. Rebeaud , J. Dewulf , H.M.G. van der Werf , L. Boone","doi":"10.1016/j.animal.2024.101368","DOIUrl":null,"url":null,"abstract":"<div><div>Life cycle assessment (<strong>LCA</strong>) and ecosystem services assessment (<strong>ESA</strong>) are often used for environmental assessment. LCA has been increasingly used over the past two decades to assess agri-food systems and has established that ruminant products have higher impacts per kg of protein than products from monogastric species. Conversely, ESA is used less but is likely to rank ruminant systems higher than monogastric systems, as the former often include grasslands that can provide high levels of regulating ecosystem services (<strong>ESs</strong>). Here, we applied both methods to a selection of contrasting meat-oriented animal-production systems that included either ruminants or monogastrics (6 of each). We considered 16 environmental impact categories in the LCA and two functional units: 1 kg of human-edible protein (<strong>HEP</strong>) and 1 m<sup>2</sup>yr of land occupied. We used the life-cycle inventory step of LCA to characterise the land occupation of the systems, i.e. the land cover types used, such as croplands and grasslands. Based on these land covers and quantification of the ES they provide, we performed ESA. We estimated that ruminant systems had higher environmental impacts than monogastric systems per kg of HEP for all 16 LCA impact categories studied. For example, for ruminants and monogastrics, mean greenhouse gas (<strong>GHG</strong>) emissions were 280 vs 32 kg CO<sub>2</sub>-eq., respectively (<em>P</em> = 0.002), and mean fossil energy use was 351 vs 189 MJ, respectively (<em>P</em> = 0.009). The trend was the opposite for impacts per m<sup>2</sup>yr, with mean GHG emissions of 0.50 vs 0.57 kg CO<sub>2</sub>-eq. (<em>P</em> = 0.485) and mean fossil energy use of 0.71 vs 3.63 MJ (<em>P</em> = 0.002) for ruminants and monogastrics, respectively. We also estimated that ruminant systems had a higher capacity to supply regulating ES than monogastric systems did, with mean scores of 2.4 and 1.2, respectively (<em>P</em> = 0.002), due to multiple types of grasslands in ruminant systems. Applying both LCA and ESA to a range of contrasting animal-production systems was a novelty of this study, and ESA indicated that ruminant systems have higher positive environmental contributions than monogastric systems. The study also found that LCA and ESA frameworks can agree or disagree on the assessments of animal-production systems depending on functional unit used (i.e. agreement per unit of land occupied but disagreement per unit of HEP).</div></div>","PeriodicalId":50789,"journal":{"name":"Animal","volume":"18 12","pages":"Article 101368"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751731124003057","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Life cycle assessment (LCA) and ecosystem services assessment (ESA) are often used for environmental assessment. LCA has been increasingly used over the past two decades to assess agri-food systems and has established that ruminant products have higher impacts per kg of protein than products from monogastric species. Conversely, ESA is used less but is likely to rank ruminant systems higher than monogastric systems, as the former often include grasslands that can provide high levels of regulating ecosystem services (ESs). Here, we applied both methods to a selection of contrasting meat-oriented animal-production systems that included either ruminants or monogastrics (6 of each). We considered 16 environmental impact categories in the LCA and two functional units: 1 kg of human-edible protein (HEP) and 1 m2yr of land occupied. We used the life-cycle inventory step of LCA to characterise the land occupation of the systems, i.e. the land cover types used, such as croplands and grasslands. Based on these land covers and quantification of the ES they provide, we performed ESA. We estimated that ruminant systems had higher environmental impacts than monogastric systems per kg of HEP for all 16 LCA impact categories studied. For example, for ruminants and monogastrics, mean greenhouse gas (GHG) emissions were 280 vs 32 kg CO2-eq., respectively (P = 0.002), and mean fossil energy use was 351 vs 189 MJ, respectively (P = 0.009). The trend was the opposite for impacts per m2yr, with mean GHG emissions of 0.50 vs 0.57 kg CO2-eq. (P = 0.485) and mean fossil energy use of 0.71 vs 3.63 MJ (P = 0.002) for ruminants and monogastrics, respectively. We also estimated that ruminant systems had a higher capacity to supply regulating ES than monogastric systems did, with mean scores of 2.4 and 1.2, respectively (P = 0.002), due to multiple types of grasslands in ruminant systems. Applying both LCA and ESA to a range of contrasting animal-production systems was a novelty of this study, and ESA indicated that ruminant systems have higher positive environmental contributions than monogastric systems. The study also found that LCA and ESA frameworks can agree or disagree on the assessments of animal-production systems depending on functional unit used (i.e. agreement per unit of land occupied but disagreement per unit of HEP).
期刊介绍:
Editorial board
animal attracts the best research in animal biology and animal systems from across the spectrum of the agricultural, biomedical, and environmental sciences. It is the central element in an exciting collaboration between the British Society of Animal Science (BSAS), Institut National de la Recherche Agronomique (INRA) and the European Federation of Animal Science (EAAP) and represents a merging of three scientific journals: Animal Science; Animal Research; Reproduction, Nutrition, Development. animal publishes original cutting-edge research, ''hot'' topics and horizon-scanning reviews on animal-related aspects of the life sciences at the molecular, cellular, organ, whole animal and production system levels. The main subject areas include: breeding and genetics; nutrition; physiology and functional biology of systems; behaviour, health and welfare; farming systems, environmental impact and climate change; product quality, human health and well-being. Animal models and papers dealing with the integration of research between these topics and their impact on the environment and people are particularly welcome.