Jun-Ping Liu , Zai-Bo Sun , Wei-Ke Li , Hua-Li Luo , Shi-Jun He , Shao-Bin Hu , Jiang-Tai Zhao , Hai-bao Yan , Ming-Guo Zhai , Hai-Long He
{"title":"2.08 Ga andesitic gneisses in the southwestern Yangtze Block: Unveiling new insights into its geological evolution","authors":"Jun-Ping Liu , Zai-Bo Sun , Wei-Ke Li , Hua-Li Luo , Shi-Jun He , Shao-Bin Hu , Jiang-Tai Zhao , Hai-bao Yan , Ming-Guo Zhai , Hai-Long He","doi":"10.1016/j.precamres.2024.107639","DOIUrl":null,"url":null,"abstract":"<div><div>The early geological history of the Yangtze Block has been difficult to unravel due to limited exposure of Archean to Paleoproterozoic rocks. Through detailed geological investigations and mapping in the southwestern (SW) Yangtze Block, this study identified Paleoproterozoic andesitic and granitic gneisses, as well as associated sedimentary rocks, within the Xinanchang (XAC) Complex. Zircon U-Pb dating yields a concordant age of 2078 ± 11 Ma for the andesitic gneiss, and a weighted mean <sup>207</sup>Pb/<sup>206</sup>Pb age of 1835 ± 12 Ma for the granitic gneiss. The zircon grains from these gneisses exhibit oscillatory zoning and Th/U ratios of 0.40–0.94, corroborating their magmatic origins. Additionally, U-Pb age spectra of concordant zircon grains from the XAC strata range from 1.80 to 2.69 Ga. Together with the intrusive relationship between the 1.84 Ga granitic gneiss and the strata, this implies a depositional age of ca. 1.84 Ga for the XAC strata. The andesitic gneiss exhibits enrichment in large-ion lithophile elements (LILEs) and light rare earth elements (LREEs), but shows depletion in Nb, Ta, and Ti. These geochemical signatures are consistent with those of contemporaneous andesitic magmatic rocks in the northern Yangtze Block, suggesting that they were derived from subduction-related sources. In contrast, the granitic gneiss in the XAC Complex shows A-type granite affinities, similar to contemporaneous granitoids widely found across the Yangtze Block. This indicates that these granitoids were formed in a post-orogenic extensional tectonic setting. The northern and SW Yangtze blocks both show records of a transition from subduction to post-orogenic extensional environments between 2.10 Ga and 1.85 Ga, suggesting that the proto-Yangtze Block likely aggregated before 2.10 Ga.</div></div>","PeriodicalId":49674,"journal":{"name":"Precambrian Research","volume":"417 ","pages":"Article 107639"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precambrian Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301926824003528","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The early geological history of the Yangtze Block has been difficult to unravel due to limited exposure of Archean to Paleoproterozoic rocks. Through detailed geological investigations and mapping in the southwestern (SW) Yangtze Block, this study identified Paleoproterozoic andesitic and granitic gneisses, as well as associated sedimentary rocks, within the Xinanchang (XAC) Complex. Zircon U-Pb dating yields a concordant age of 2078 ± 11 Ma for the andesitic gneiss, and a weighted mean 207Pb/206Pb age of 1835 ± 12 Ma for the granitic gneiss. The zircon grains from these gneisses exhibit oscillatory zoning and Th/U ratios of 0.40–0.94, corroborating their magmatic origins. Additionally, U-Pb age spectra of concordant zircon grains from the XAC strata range from 1.80 to 2.69 Ga. Together with the intrusive relationship between the 1.84 Ga granitic gneiss and the strata, this implies a depositional age of ca. 1.84 Ga for the XAC strata. The andesitic gneiss exhibits enrichment in large-ion lithophile elements (LILEs) and light rare earth elements (LREEs), but shows depletion in Nb, Ta, and Ti. These geochemical signatures are consistent with those of contemporaneous andesitic magmatic rocks in the northern Yangtze Block, suggesting that they were derived from subduction-related sources. In contrast, the granitic gneiss in the XAC Complex shows A-type granite affinities, similar to contemporaneous granitoids widely found across the Yangtze Block. This indicates that these granitoids were formed in a post-orogenic extensional tectonic setting. The northern and SW Yangtze blocks both show records of a transition from subduction to post-orogenic extensional environments between 2.10 Ga and 1.85 Ga, suggesting that the proto-Yangtze Block likely aggregated before 2.10 Ga.
期刊介绍:
Precambrian Research publishes studies on all aspects of the early stages of the composition, structure and evolution of the Earth and its planetary neighbours. With a focus on process-oriented and comparative studies, it covers, but is not restricted to, subjects such as:
(1) Chemical, biological, biochemical and cosmochemical evolution; the origin of life; the evolution of the oceans and atmosphere; the early fossil record; palaeobiology;
(2) Geochronology and isotope and elemental geochemistry;
(3) Precambrian mineral deposits;
(4) Geophysical aspects of the early Earth and Precambrian terrains;
(5) Nature, formation and evolution of the Precambrian lithosphere and mantle including magmatic, depositional, metamorphic and tectonic processes.
In addition, the editors particularly welcome integrated process-oriented studies that involve a combination of the above fields and comparative studies that demonstrate the effect of Precambrian evolution on Phanerozoic earth system processes.
Regional and localised studies of Precambrian phenomena are considered appropriate only when the detail and quality allow illustration of a wider process, or when significant gaps in basic knowledge of a particular area can be filled.