Lithogeochemistry and origin of the komatiites from Mundonguara mine in the Manica greenstone belt, Mozambique

IF 2.2 4区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
L.N. Mendes , O. Martinsson , D.L. Jamal , A.M. Azim Zadeh , C. Wanhainen
{"title":"Lithogeochemistry and origin of the komatiites from Mundonguara mine in the Manica greenstone belt, Mozambique","authors":"L.N. Mendes ,&nbsp;O. Martinsson ,&nbsp;D.L. Jamal ,&nbsp;A.M. Azim Zadeh ,&nbsp;C. Wanhainen","doi":"10.1016/j.jafrearsci.2024.105494","DOIUrl":null,"url":null,"abstract":"<div><div>The Manica greenstones belt in western Mozambique constitutes the eastern extension of the Odzi-Mutare greenstone belt in Zimbabwe that is one of several Archean greenstone belts within the Zimbabwe Craton. These greenstones are in Mozambique constituting the Manica Group and are subdivided in two main lithostratigraphic units: The Macequece Formation and the Vengo Formation. The former is hosting the Mundonguara Cu-Au mine and is dominated by volcanic rocks, while the younger Vengo Formation is consisting of epiclastic sedimentary rocks. This paper considers the character and origin of the ultramafic, mafic, and felsic rocks within the Macequece Formation. They include peridotitic komatiite, pyroxenitic komatiite, komatiitic cumulate rocks, gabbroic dykes, rhyolitic units, and a granitic rock intruding the komatiites. Samples of these rocks have been collected from outcrops and drill cores and are investigated through petrographic studies of thin sections and whole rock geochemistry including major and trace elements to interpret the geological environment and tectonic setting.</div><div>The supracrustal rocks are metamorphosed to greenschist facies and the komatiites consists of varying proportions of serpentine, talc, chlorite, and amphibole. Primary features are partly preserved, with spinifex, vesicular, and cumulate textures. The komatiites are variously affected by carbonate alteration and deformation and the rhyolitic rocks are mostly strongly silicified. The komatiites are of the Al-undepleted type, with a MgO content of 25–45 wt %, while the mafic intrusions are tholeiitic in character, varying from gabbronorite to diorite in composition. Trace element diagrams used for interpretation of tectonic setting gives ambiguous results that could be an effect of crustal contamination of the ultramafic and mafic magmas. Using diagrams less sensitive to crustal contamination suggests the mafic and ultramafic magma to have a mantle source Minor rhyolitic rocks are chemically similar to granitic rocks intruding the komatiites and might have a mainly crustal magma source. This suggested that the Manica greenstones belt formed from magmas generated by mantle plume activity in a continental rift setting and were deposited on older Archean continental crust. These rocks are tentatively correlated with the Bends or Brookland formations belonging to the 2.9–2.8 Ga Mtshingwe Group in the Belingwe greenstone belts in Zimbabwe.</div></div>","PeriodicalId":14874,"journal":{"name":"Journal of African Earth Sciences","volume":"223 ","pages":"Article 105494"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of African Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1464343X24003285","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Manica greenstones belt in western Mozambique constitutes the eastern extension of the Odzi-Mutare greenstone belt in Zimbabwe that is one of several Archean greenstone belts within the Zimbabwe Craton. These greenstones are in Mozambique constituting the Manica Group and are subdivided in two main lithostratigraphic units: The Macequece Formation and the Vengo Formation. The former is hosting the Mundonguara Cu-Au mine and is dominated by volcanic rocks, while the younger Vengo Formation is consisting of epiclastic sedimentary rocks. This paper considers the character and origin of the ultramafic, mafic, and felsic rocks within the Macequece Formation. They include peridotitic komatiite, pyroxenitic komatiite, komatiitic cumulate rocks, gabbroic dykes, rhyolitic units, and a granitic rock intruding the komatiites. Samples of these rocks have been collected from outcrops and drill cores and are investigated through petrographic studies of thin sections and whole rock geochemistry including major and trace elements to interpret the geological environment and tectonic setting.
The supracrustal rocks are metamorphosed to greenschist facies and the komatiites consists of varying proportions of serpentine, talc, chlorite, and amphibole. Primary features are partly preserved, with spinifex, vesicular, and cumulate textures. The komatiites are variously affected by carbonate alteration and deformation and the rhyolitic rocks are mostly strongly silicified. The komatiites are of the Al-undepleted type, with a MgO content of 25–45 wt %, while the mafic intrusions are tholeiitic in character, varying from gabbronorite to diorite in composition. Trace element diagrams used for interpretation of tectonic setting gives ambiguous results that could be an effect of crustal contamination of the ultramafic and mafic magmas. Using diagrams less sensitive to crustal contamination suggests the mafic and ultramafic magma to have a mantle source Minor rhyolitic rocks are chemically similar to granitic rocks intruding the komatiites and might have a mainly crustal magma source. This suggested that the Manica greenstones belt formed from magmas generated by mantle plume activity in a continental rift setting and were deposited on older Archean continental crust. These rocks are tentatively correlated with the Bends or Brookland formations belonging to the 2.9–2.8 Ga Mtshingwe Group in the Belingwe greenstone belts in Zimbabwe.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of African Earth Sciences
Journal of African Earth Sciences 地学-地球科学综合
CiteScore
4.70
自引率
4.30%
发文量
240
审稿时长
12 months
期刊介绍: The Journal of African Earth Sciences sees itself as the prime geological journal for all aspects of the Earth Sciences about the African plate. Papers dealing with peripheral areas are welcome if they demonstrate a tight link with Africa. The Journal publishes high quality, peer-reviewed scientific papers. It is devoted primarily to research papers but short communications relating to new developments of broad interest, reviews and book reviews will also be considered. Papers must have international appeal and should present work of more regional than local significance and dealing with well identified and justified scientific questions. Specialised technical papers, analytical or exploration reports must be avoided. Papers on applied geology should preferably be linked to such core disciplines and must be addressed to a more general geoscientific audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信