{"title":"A dual-based first-order algorithm for ToA asynchronous localization and synchronization","authors":"Eyal Gur , Alon Amar , Shoham Sabach","doi":"10.1016/j.sigpro.2024.109814","DOIUrl":null,"url":null,"abstract":"<div><div>Joint ToA source localization and synchronization determines the location and time offset of a radiating source using time-of-arrival measurements collected from a time-synchronized array of sensors. Various approaches have been proposed to address this non-convex and non-smooth optimization problem, which usually transform the problem by applying convex relaxations or smooth approximations. In this paper, we focus on the original joint problem and show that it can be expressed as a sum of a quadratic function with multiple non-smooth functions. This type of problems cannot be solved using traditional proximal-based methods, and we develop a tailored dual-based first-order algorithm. We analyze the proposed method, and prove its convergence to critical points of the original problem under mild assumptions. Experimental results showcase advantages of the method in terms of convergence, RMSE, bias, and complexity.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"230 ","pages":"Article 109814"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424004341","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Joint ToA source localization and synchronization determines the location and time offset of a radiating source using time-of-arrival measurements collected from a time-synchronized array of sensors. Various approaches have been proposed to address this non-convex and non-smooth optimization problem, which usually transform the problem by applying convex relaxations or smooth approximations. In this paper, we focus on the original joint problem and show that it can be expressed as a sum of a quadratic function with multiple non-smooth functions. This type of problems cannot be solved using traditional proximal-based methods, and we develop a tailored dual-based first-order algorithm. We analyze the proposed method, and prove its convergence to critical points of the original problem under mild assumptions. Experimental results showcase advantages of the method in terms of convergence, RMSE, bias, and complexity.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.