Zhonghua Xie , Lingjun Liu , Zehong Chen , Cheng Wang
{"title":"Proximal gradient algorithm with dual momentum for robust compressive sensing MRI","authors":"Zhonghua Xie , Lingjun Liu , Zehong Chen , Cheng Wang","doi":"10.1016/j.sigpro.2024.109817","DOIUrl":null,"url":null,"abstract":"<div><div>Adopting the new signal acquisition technology Compressive Sensing (CS) to Magnetic Resonance Imaging (MRI) reconstruction has been proved to be an effective scheme for reconstruction of high-resolution images with only a small fraction of data, thus making it the key to design a reconstruction algorithm with excellent performance. To achieve accelerated and robust CS-MRI reconstruction, a novel combination of Proximal Gradient (PG) and two types of momentum is developed. Firstly, to accelerate convergence of the PG iteration, we introduce the classical momentum method to solve the data-fitting subproblem for fast gradient search. Secondly, inspired by accelerated gradient strategies for convex optimizations, we further modify the obtained PG algorithm with the Nesterov's momentum technique to solve the prior subproblem, boosting its performance. We demonstrate the effectiveness and flexibility of the proposed method by combining it with two categories of prior models including a weighted nuclear norm regularization and a deep CNN (Convolutional Neural Network) prior model. As such, we obtain a dual momentum-based PG method, which can be equipped with any denoising engine. It is shown that the momentum-based PG method is closely related to the well-known Approximate Message Passing (AMP) algorithm. Experiments validate the effectiveness of leveraging dual momentum to accelerate the algorithm and demonstrate the superior performance of the proposed method both quantitatively and visually as compared with the existing methods.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"230 ","pages":"Article 109817"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424004377","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Adopting the new signal acquisition technology Compressive Sensing (CS) to Magnetic Resonance Imaging (MRI) reconstruction has been proved to be an effective scheme for reconstruction of high-resolution images with only a small fraction of data, thus making it the key to design a reconstruction algorithm with excellent performance. To achieve accelerated and robust CS-MRI reconstruction, a novel combination of Proximal Gradient (PG) and two types of momentum is developed. Firstly, to accelerate convergence of the PG iteration, we introduce the classical momentum method to solve the data-fitting subproblem for fast gradient search. Secondly, inspired by accelerated gradient strategies for convex optimizations, we further modify the obtained PG algorithm with the Nesterov's momentum technique to solve the prior subproblem, boosting its performance. We demonstrate the effectiveness and flexibility of the proposed method by combining it with two categories of prior models including a weighted nuclear norm regularization and a deep CNN (Convolutional Neural Network) prior model. As such, we obtain a dual momentum-based PG method, which can be equipped with any denoising engine. It is shown that the momentum-based PG method is closely related to the well-known Approximate Message Passing (AMP) algorithm. Experiments validate the effectiveness of leveraging dual momentum to accelerate the algorithm and demonstrate the superior performance of the proposed method both quantitatively and visually as compared with the existing methods.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.