Feng Yin, Philip E. Lewis, Jose L. Gómez-Dans, Thomas Weiß
{"title":"Archetypal crop trait dynamics for enhanced retrieval of biophysical parameters from Sentinel-2 MSI","authors":"Feng Yin, Philip E. Lewis, Jose L. Gómez-Dans, Thomas Weiß","doi":"10.1016/j.rse.2024.114510","DOIUrl":null,"url":null,"abstract":"We present a new method for estimating biophysical parameters from Earth Observation (EO) data using a crop-specific empirical model based on the PROSAIL Radiative Transfer (RT) model, called an ‘archetype’ model. The first-order model presented uses maximum biophysical parameter magnitude, phenological and soil parameters to describe the spectral reflectance (400–2500 nm) of vegetation over time. The approach assumes smooth variation and archetypical coordination of crop biophysical parameters over time for a given crop. The form of coordination is learned from a large sample of observations. Using Sentinel-2 observations of maize from Northeast China in 2019, we map reflectance to biophysical parameters using an inverse model operator, synchronise the parameters to a consistent time frame using a double logistic model of <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">L</mi><mi is=\"true\">A</mi><mi is=\"true\">I</mi></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.086ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -796.9 1936.5 898.2\" width=\"4.498ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-4C\"></use></g><g is=\"true\" transform=\"translate(681,0)\"><use xlink:href=\"#MJMATHI-41\"></use></g><g is=\"true\" transform=\"translate(1432,0)\"><use xlink:href=\"#MJMATHI-49\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">L</mi><mi is=\"true\">A</mi><mi is=\"true\">I</mi></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">L</mi><mi is=\"true\">A</mi><mi is=\"true\">I</mi></mrow></math></script></span>, then derive the model archetypes as the median value of the synchronised samples. We apply the model to estimate time series of biophysical parameters for different cereal crops using an ensemble framework with a weighted K-nearest neighbour solution, and validate the results with ground measurements of different crops collected near Munich, Germany in 2017 and 2018. The results show <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">R</mi></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.971ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -747.2 759.5 848.5\" width=\"1.764ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-52\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">R</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">R</mi></math></script></span> values greater than 0.8 for leaf area index (<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">L</mi><mi is=\"true\">A</mi><mi is=\"true\">I</mi></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.086ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -796.9 1936.5 898.2\" width=\"4.498ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-4C\"></use></g><g is=\"true\" transform=\"translate(681,0)\"><use xlink:href=\"#MJMATHI-41\"></use></g><g is=\"true\" transform=\"translate(1432,0)\"><use xlink:href=\"#MJMATHI-49\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">L</mi><mi is=\"true\">A</mi><mi is=\"true\">I</mi></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">L</mi><mi is=\"true\">A</mi><mi is=\"true\">I</mi></mrow></math></script></span>) and leaf brown pigment content (<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">C</mi></mrow><mrow is=\"true\"><mi is=\"true\">b</mi><mi is=\"true\">r</mi><mi is=\"true\">o</mi><mi is=\"true\">w</mi><mi is=\"true\">n</mi></mrow></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 2713 1047.3\" width=\"6.301ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-43\"></use></g></g><g is=\"true\" transform=\"translate(715,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-62\"></use></g><g is=\"true\" transform=\"translate(303,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-72\"></use></g><g is=\"true\" transform=\"translate(622,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-6F\"></use></g><g is=\"true\" transform=\"translate(966,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-77\"></use></g><g is=\"true\" transform=\"translate(1472,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-6E\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">C</mi></mrow><mrow is=\"true\"><mi is=\"true\">b</mi><mi is=\"true\">r</mi><mi is=\"true\">o</mi><mi is=\"true\">w</mi><mi is=\"true\">n</mi></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">C</mi></mrow><mrow is=\"true\"><mi is=\"true\">b</mi><mi is=\"true\">r</mi><mi is=\"true\">o</mi><mi is=\"true\">w</mi><mi is=\"true\">n</mi></mrow></msub></math></script></span>), with an RMSE of 0.94 <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><msup is=\"true\"><mrow is=\"true\"><mtext is=\"true\">m</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msup><mo is=\"true\">/</mo><msup is=\"true\"><mrow is=\"true\"><mtext is=\"true\">m</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msup></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.894ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -896.2 3075.3 1246\" width=\"7.143ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-6D\"></use></g></g><g is=\"true\" transform=\"translate(833,362)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g><g is=\"true\" transform=\"translate(1287,0)\"><use xlink:href=\"#MJMAIN-2F\"></use></g><g is=\"true\" transform=\"translate(1787,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-6D\"></use></g></g><g is=\"true\" transform=\"translate(833,362)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><msup is=\"true\"><mrow is=\"true\"><mtext is=\"true\">m</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msup><mo is=\"true\">/</mo><msup is=\"true\"><mrow is=\"true\"><mtext is=\"true\">m</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msup></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><msup is=\"true\"><mrow is=\"true\"><mtext is=\"true\">m</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msup><mo is=\"true\">/</mo><msup is=\"true\"><mrow is=\"true\"><mtext is=\"true\">m</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msup></mrow></math></script></span> for <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">L</mi><mi is=\"true\">A</mi><mi is=\"true\">I</mi></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.086ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -796.9 1936.5 898.2\" width=\"4.498ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-4C\"></use></g><g is=\"true\" transform=\"translate(681,0)\"><use xlink:href=\"#MJMATHI-41\"></use></g><g is=\"true\" transform=\"translate(1432,0)\"><use xlink:href=\"#MJMATHI-49\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">L</mi><mi is=\"true\">A</mi><mi is=\"true\">I</mi></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">L</mi><mi is=\"true\">A</mi><mi is=\"true\">I</mi></mrow></math></script></span> and 0.15 for <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">C</mi></mrow><mrow is=\"true\"><mi is=\"true\">b</mi><mi is=\"true\">r</mi><mi is=\"true\">o</mi><mi is=\"true\">w</mi><mi is=\"true\">n</mi></mrow></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 2713 1047.3\" width=\"6.301ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-43\"></use></g></g><g is=\"true\" transform=\"translate(715,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-62\"></use></g><g is=\"true\" transform=\"translate(303,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-72\"></use></g><g is=\"true\" transform=\"translate(622,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-6F\"></use></g><g is=\"true\" transform=\"translate(966,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-77\"></use></g><g is=\"true\" transform=\"translate(1472,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-6E\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">C</mi></mrow><mrow is=\"true\"><mi is=\"true\">b</mi><mi is=\"true\">r</mi><mi is=\"true\">o</mi><mi is=\"true\">w</mi><mi is=\"true\">n</mi></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">C</mi></mrow><mrow is=\"true\"><mi is=\"true\">b</mi><mi is=\"true\">r</mi><mi is=\"true\">o</mi><mi is=\"true\">w</mi><mi is=\"true\">n</mi></mrow></msub></math></script></span>. The chlorophyll content (<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">C</mi></mrow><mrow is=\"true\"><mi is=\"true\">a</mi><mi is=\"true\">b</mi></mrow></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 1493.6 1047.3\" width=\"3.469ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-43\"></use></g></g><g is=\"true\" transform=\"translate(715,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-61\"></use></g><g is=\"true\" transform=\"translate(374,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-62\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">C</mi></mrow><mrow is=\"true\"><mi is=\"true\">a</mi><mi is=\"true\">b</mi></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">C</mi></mrow><mrow is=\"true\"><mi is=\"true\">a</mi><mi is=\"true\">b</mi></mrow></msub></math></script></span>) and canopy water content (<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">C</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">C</mi></mrow><mrow is=\"true\"><mi is=\"true\">w</mi></mrow></msub></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 2082.6 1047.3\" width=\"4.837ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-43\"></use></g><g is=\"true\" transform=\"translate(760,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-43\"></use></g></g><g is=\"true\" transform=\"translate(715,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-77\"></use></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">C</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">C</mi></mrow><mrow is=\"true\"><mi is=\"true\">w</mi></mrow></msub></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">C</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">C</mi></mrow><mrow is=\"true\"><mi is=\"true\">w</mi></mrow></msub></mrow></math></script></span>) were retrieved at a higher level of accuracy, with <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">R</mi></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.971ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -747.2 759.5 848.5\" width=\"1.764ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-52\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">R</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">R</mi></math></script></span> values around 0.9 and an RMSE of <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mn is=\"true\">6</mn><mo is=\"true\">.</mo><mn is=\"true\">59</mn><mi mathvariant=\"normal\" is=\"true\">&#x3BC;</mi><msup is=\"true\"><mrow is=\"true\"><mtext is=\"true\">g/cm</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msup></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.24ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -1045.3 5283.1 1395\" width=\"12.27ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-36\"></use></g><g is=\"true\" transform=\"translate(500,0)\"><use xlink:href=\"#MJMAIN-2E\"></use></g><g is=\"true\" transform=\"translate(945,0)\"><use xlink:href=\"#MJMAIN-35\"></use><use x=\"500\" xlink:href=\"#MJMAIN-39\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(1946,0)\"><use xlink:href=\"#MJMATHI-3BC\"></use></g><g is=\"true\" transform=\"translate(2550,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-67\"></use><use x=\"500\" xlink:href=\"#MJMAIN-2F\" y=\"0\"></use><use x=\"1001\" xlink:href=\"#MJMAIN-63\" y=\"0\"></use><use x=\"1445\" xlink:href=\"#MJMAIN-6D\" y=\"0\"></use></g></g><g is=\"true\" transform=\"translate(2279,477)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mn is=\"true\">6</mn><mo is=\"true\">.</mo><mn is=\"true\">59</mn><mi is=\"true\" mathvariant=\"normal\">μ</mi><msup is=\"true\"><mrow is=\"true\"><mtext is=\"true\">g/cm</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msup></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mn is=\"true\">6</mn><mo is=\"true\">.</mo><mn is=\"true\">59</mn><mi mathvariant=\"normal\" is=\"true\">μ</mi><msup is=\"true\"><mrow is=\"true\"><mtext is=\"true\">g/cm</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msup></mrow></math></script></span> for <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">C</mi></mrow><mrow is=\"true\"><mi is=\"true\">a</mi><mi is=\"true\">b</mi></mrow></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 1493.6 1047.3\" width=\"3.469ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-43\"></use></g></g><g is=\"true\" transform=\"translate(715,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-61\"></use></g><g is=\"true\" transform=\"translate(374,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-62\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">C</mi></mrow><mrow is=\"true\"><mi is=\"true\">a</mi><mi is=\"true\">b</mi></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">C</mi></mrow><mrow is=\"true\"><mi is=\"true\">a</mi><mi is=\"true\">b</mi></mrow></msub></math></script></span> and 0.03 <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup is=\"true\"><mrow is=\"true\"><mtext is=\"true\">g/cm</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msup></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.24ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -1045.3 2732.9 1395\" width=\"6.347ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-67\"></use><use x=\"500\" xlink:href=\"#MJMAIN-2F\" y=\"0\"></use><use x=\"1001\" xlink:href=\"#MJMAIN-63\" y=\"0\"></use><use x=\"1445\" xlink:href=\"#MJMAIN-6D\" y=\"0\"></use></g></g><g is=\"true\" transform=\"translate(2279,477)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup is=\"true\"><mrow is=\"true\"><mtext is=\"true\">g/cm</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msup></math></span></span><script type=\"math/mml\"><math><msup is=\"true\"><mrow is=\"true\"><mtext is=\"true\">g/cm</mtext></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msup></math></script></span> for <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">C</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">C</mi></mrow><mrow is=\"true\"><mi is=\"true\">w</mi></mrow></msub></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 2082.6 1047.3\" width=\"4.837ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-43\"></use></g><g is=\"true\" transform=\"translate(760,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-43\"></use></g></g><g is=\"true\" transform=\"translate(715,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-77\"></use></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">C</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">C</mi></mrow><mrow is=\"true\"><mi is=\"true\">w</mi></mrow></msub></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">C</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">C</mi></mrow><mrow is=\"true\"><mi is=\"true\">w</mi></mrow></msub></mrow></math></script></span>. Comparison of forward-modelled hyperspectral reflectance with independent ground measures shows that the retrieved parameters account for 90% of the variation in canopy reflectance, with an overall RMSE of around 0.05 in reflectance units. The retrievals for all terms are mostly within <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mn is=\"true\">1</mn><mi is=\"true\">&#x3C3;</mi></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.971ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -747.2 1073 848.5\" width=\"2.492ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-31\"></use></g><g is=\"true\" transform=\"translate(500,0)\"><use xlink:href=\"#MJMATHI-3C3\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mn is=\"true\">1</mn><mi is=\"true\">σ</mi></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mn is=\"true\">1</mn><mi is=\"true\">σ</mi></mrow></math></script></span> when measurement and prediction uncertainty are taken into account, except for some early and late season issues in leaf and canopy water due to the complexity of canopy structure and understory during these periods. The approach provides a new form of constraint for the simultaneous estimation of biophysical parameters from EO and greatly reduces the rank of the problem. It is suitable for monitoring crop conditions where biophysical parameters vary smoothly over time consistently with each archetype form. The approach can be refined for other canopy types and canopy representations and could provide strong constraints on expected smoothly-varying canopy features to aid in the interpretation of EO signals across different regions of the electromagnetic spectrum.","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"26 1","pages":""},"PeriodicalIF":11.1000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.rse.2024.114510","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
We present a new method for estimating biophysical parameters from Earth Observation (EO) data using a crop-specific empirical model based on the PROSAIL Radiative Transfer (RT) model, called an ‘archetype’ model. The first-order model presented uses maximum biophysical parameter magnitude, phenological and soil parameters to describe the spectral reflectance (400–2500 nm) of vegetation over time. The approach assumes smooth variation and archetypical coordination of crop biophysical parameters over time for a given crop. The form of coordination is learned from a large sample of observations. Using Sentinel-2 observations of maize from Northeast China in 2019, we map reflectance to biophysical parameters using an inverse model operator, synchronise the parameters to a consistent time frame using a double logistic model of , then derive the model archetypes as the median value of the synchronised samples. We apply the model to estimate time series of biophysical parameters for different cereal crops using an ensemble framework with a weighted K-nearest neighbour solution, and validate the results with ground measurements of different crops collected near Munich, Germany in 2017 and 2018. The results show values greater than 0.8 for leaf area index () and leaf brown pigment content (), with an RMSE of 0.94 for and 0.15 for . The chlorophyll content () and canopy water content () were retrieved at a higher level of accuracy, with values around 0.9 and an RMSE of for and 0.03 for . Comparison of forward-modelled hyperspectral reflectance with independent ground measures shows that the retrieved parameters account for 90% of the variation in canopy reflectance, with an overall RMSE of around 0.05 in reflectance units. The retrievals for all terms are mostly within when measurement and prediction uncertainty are taken into account, except for some early and late season issues in leaf and canopy water due to the complexity of canopy structure and understory during these periods. The approach provides a new form of constraint for the simultaneous estimation of biophysical parameters from EO and greatly reduces the rank of the problem. It is suitable for monitoring crop conditions where biophysical parameters vary smoothly over time consistently with each archetype form. The approach can be refined for other canopy types and canopy representations and could provide strong constraints on expected smoothly-varying canopy features to aid in the interpretation of EO signals across different regions of the electromagnetic spectrum.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.