The cardio-oncologic burden of breast cancer: molecular mechanisms and importance of preclinical models

IF 7.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
J. Brauer, M. Tumani, N. Frey, L. H. Lehmann
{"title":"The cardio-oncologic burden of breast cancer: molecular mechanisms and importance of preclinical models","authors":"J. Brauer, M. Tumani, N. Frey, L. H. Lehmann","doi":"10.1007/s00395-024-01090-w","DOIUrl":null,"url":null,"abstract":"<p>Breast cancer, the most prevalent cancer affecting women worldwide, poses a significant cardio-oncological burden. Despite advancements in novel therapeutic strategies, anthracyclines, HER2 antagonists, and radiation remain the cornerstones of oncological treatment. However, each carries a risk of cardiotoxicity, though the molecular mechanisms underlying these adverse effects differ. Common mechanisms include DNA damage response, increased reactive oxygen species, and mitochondrial dysfunction, which are key areas of ongoing research for potential cardioprotective strategies. Since these mechanisms are also essential for effective tumor cytotoxicity, we explore tumor-specific effects, particularly in hereditary breast cancer linked to BRCA1 and BRCA2 mutations. These genetic variants impair DNA repair mechanisms, increase the risk of tumorigenesis and possibly for cardiotoxicity from treatments such as anthracyclines and HER2 antagonists. Novel therapies, including immune checkpoint inhibitors, are used in the clinic for triple-negative breast cancer and improve the oncological outcomes of breast cancer patients. This review discusses the molecular mechanisms underlying BRCA dysfunction and the associated pathological pathways. It gives an overview of preclinical models of breast cancer, such as genetically engineered mouse models, syngeneic murine models, humanized mouse models, and various in vitro and ex vivo systems and models to study cardiovascular side effects of breast cancer therapies. Understanding the underlying mechanism of cardiotoxicity and developing cardioprotective strategies in preclinical models are essential for improving treatment outcomes and reducing long-term cardiovascular risks in breast cancer patients.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"16 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic Research in Cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00395-024-01090-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer, the most prevalent cancer affecting women worldwide, poses a significant cardio-oncological burden. Despite advancements in novel therapeutic strategies, anthracyclines, HER2 antagonists, and radiation remain the cornerstones of oncological treatment. However, each carries a risk of cardiotoxicity, though the molecular mechanisms underlying these adverse effects differ. Common mechanisms include DNA damage response, increased reactive oxygen species, and mitochondrial dysfunction, which are key areas of ongoing research for potential cardioprotective strategies. Since these mechanisms are also essential for effective tumor cytotoxicity, we explore tumor-specific effects, particularly in hereditary breast cancer linked to BRCA1 and BRCA2 mutations. These genetic variants impair DNA repair mechanisms, increase the risk of tumorigenesis and possibly for cardiotoxicity from treatments such as anthracyclines and HER2 antagonists. Novel therapies, including immune checkpoint inhibitors, are used in the clinic for triple-negative breast cancer and improve the oncological outcomes of breast cancer patients. This review discusses the molecular mechanisms underlying BRCA dysfunction and the associated pathological pathways. It gives an overview of preclinical models of breast cancer, such as genetically engineered mouse models, syngeneic murine models, humanized mouse models, and various in vitro and ex vivo systems and models to study cardiovascular side effects of breast cancer therapies. Understanding the underlying mechanism of cardiotoxicity and developing cardioprotective strategies in preclinical models are essential for improving treatment outcomes and reducing long-term cardiovascular risks in breast cancer patients.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Basic Research in Cardiology
Basic Research in Cardiology 医学-心血管系统
CiteScore
16.30
自引率
5.30%
发文量
54
审稿时长
6-12 weeks
期刊介绍: Basic Research in Cardiology is an international journal for cardiovascular research. It provides a forum for original and review articles related to experimental cardiology that meet its stringent scientific standards. Basic Research in Cardiology regularly receives articles from the fields of - Molecular and Cellular Biology - Biochemistry - Biophysics - Pharmacology - Physiology and Pathology - Clinical Cardiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信