Nils Oberhof, Andreas Erbs Hillers-Bendtsen, Oscar Berlin Obel, Karoline Schjelde, Kurt V Mikkelsen, Andreas Dreuw
{"title":"Searching the Chemical Space of Hetero-Atom Bridged Norbornadienes","authors":"Nils Oberhof, Andreas Erbs Hillers-Bendtsen, Oscar Berlin Obel, Karoline Schjelde, Kurt V Mikkelsen, Andreas Dreuw","doi":"10.1039/d4cp04179h","DOIUrl":null,"url":null,"abstract":"The efficient utilization of solar energy as renewable source is a central pillar of societal future energy production. So-called molecular solar thermal energy storage (MOST) systems have attracted considerable attention as storage solution and heat release on demand. Substituted norbornadiene/quadricyclane (NBD/QC) derivatives have been shown to be well suited for this task, in particular when substituted with electron donating and accepting functional groups. The introduction of a hetero-atom in the main structural framework, however, has not been investigated thoroughly, yet. In this study, a previously established high-throughput screening procedure is used to investigate carbon, nitrogen and oxygen-bridged norbornadiene derivatives for their potential as MOST system employing their theoretical solar power conversion efficiency as scoring metric. Therefore, we explore a large chemical space considering also plausible synthetic availability and propose a set of 5 molecules per bridge head as best candidates for further experimental evaluation.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"3 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cp04179h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The efficient utilization of solar energy as renewable source is a central pillar of societal future energy production. So-called molecular solar thermal energy storage (MOST) systems have attracted considerable attention as storage solution and heat release on demand. Substituted norbornadiene/quadricyclane (NBD/QC) derivatives have been shown to be well suited for this task, in particular when substituted with electron donating and accepting functional groups. The introduction of a hetero-atom in the main structural framework, however, has not been investigated thoroughly, yet. In this study, a previously established high-throughput screening procedure is used to investigate carbon, nitrogen and oxygen-bridged norbornadiene derivatives for their potential as MOST system employing their theoretical solar power conversion efficiency as scoring metric. Therefore, we explore a large chemical space considering also plausible synthetic availability and propose a set of 5 molecules per bridge head as best candidates for further experimental evaluation.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.