Surface Structure Dependent Activation of Hydrogen over Metal Oxides during Syngas Conversion

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bing Bai, Yihan Ye, Feng Jiao, Jianping Xiao, Yang Pan, Zehua Cai, Mingshu Chen, Xiulian Pan, Xinhe Bao
{"title":"Surface Structure Dependent Activation of Hydrogen over Metal Oxides during Syngas Conversion","authors":"Bing Bai, Yihan Ye, Feng Jiao, Jianping Xiao, Yang Pan, Zehua Cai, Mingshu Chen, Xiulian Pan, Xinhe Bao","doi":"10.1021/jacs.4c14395","DOIUrl":null,"url":null,"abstract":"Despite the extensive studies on the adsorption and activation of hydrogen over metal oxides, it remains a challenge to investigate the structure-dependent activation of hydrogen and its selectivity mechanism in hydrogenation reactions. Herein we take spinel and solid solution MnGaO<sub><i>x</i></sub> with a similar bulk chemical composition and study the hydrogen activation mechanism and reactivity in syngas conversion. The results show that MnGaO<sub><i>x</i></sub>-Solid Solution (MnGaO<sub><i>x</i></sub>-SS) is a typical Mn-doped hexagonal close-packed (HCP) Ga<sub>2</sub>O<sub>3</sub> with a Ga-rich surface. Upon exposure to hydrogen, Ga–H and O–H species are simultaneously generated. Ga–H species are highly active but unselective in CO activation, forming CH<sub><i>x</i></sub>O, and ethylene hydrogenation, forming ethane. In contrast, MnGaO<sub><i>x</i></sub>-Spinel is a face-centered-cubic (FCC) spinel phase featuring a Mn-rich surface, thus effectively suppressing the formation of Ga–H species. Interestingly, only part of the O–H species are active for CO activation while the O–H species are inert for olefin hydrogenation over MnGaO<sub><i>x</i></sub>-Spinel. Therefore, MnGaO<sub><i>x</i></sub>-Spinel exhibits a higher activity and higher light-olefin selectivity than MnGaO<sub><i>x</i></sub>-SS in combination with SAPO-18 during syngas conversion. These fundamental understandings are essential to guide the design and further optimization of metal oxide catalysts for selectivity control in hydrogenations.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"12 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c14395","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the extensive studies on the adsorption and activation of hydrogen over metal oxides, it remains a challenge to investigate the structure-dependent activation of hydrogen and its selectivity mechanism in hydrogenation reactions. Herein we take spinel and solid solution MnGaOx with a similar bulk chemical composition and study the hydrogen activation mechanism and reactivity in syngas conversion. The results show that MnGaOx-Solid Solution (MnGaOx-SS) is a typical Mn-doped hexagonal close-packed (HCP) Ga2O3 with a Ga-rich surface. Upon exposure to hydrogen, Ga–H and O–H species are simultaneously generated. Ga–H species are highly active but unselective in CO activation, forming CHxO, and ethylene hydrogenation, forming ethane. In contrast, MnGaOx-Spinel is a face-centered-cubic (FCC) spinel phase featuring a Mn-rich surface, thus effectively suppressing the formation of Ga–H species. Interestingly, only part of the O–H species are active for CO activation while the O–H species are inert for olefin hydrogenation over MnGaOx-Spinel. Therefore, MnGaOx-Spinel exhibits a higher activity and higher light-olefin selectivity than MnGaOx-SS in combination with SAPO-18 during syngas conversion. These fundamental understandings are essential to guide the design and further optimization of metal oxide catalysts for selectivity control in hydrogenations.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信