Cooperative Atomically Dispersed Fe–N4 and Sn–Nx Moieties for Durable and More Active Oxygen Electroreduction in Fuel Cells

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Fan Xia, Bomin Li, Bowen An, Michael J. Zachman, Xiaohong Xie, Yiqi Liu, Shicheng Xu, Sulay Saha, Qin Wu, Siyuan Gao, Iddrisu B. Abdul Razak, Dennis E. Brown, Vijay Ramani, Rongyue Wang, Tobin J. Marks, Yuyan Shao, Yingwen Cheng
{"title":"Cooperative Atomically Dispersed Fe–N4 and Sn–Nx Moieties for Durable and More Active Oxygen Electroreduction in Fuel Cells","authors":"Fan Xia, Bomin Li, Bowen An, Michael J. Zachman, Xiaohong Xie, Yiqi Liu, Shicheng Xu, Sulay Saha, Qin Wu, Siyuan Gao, Iddrisu B. Abdul Razak, Dennis E. Brown, Vijay Ramani, Rongyue Wang, Tobin J. Marks, Yuyan Shao, Yingwen Cheng","doi":"10.1021/jacs.4c11121","DOIUrl":null,"url":null,"abstract":"One grand challenge for deploying porous carbons with embedded metal–nitrogen–carbon (M–N–C) moieties as platinum group metal (PGM)-free electrocatalysts in proton-exchange membrane fuel cells is their fast degradation and inferior activity. Here, we report the modulation of the local environment at Fe–N<sub>4</sub> sites via the application of atomic Sn–N<sub><i>x</i></sub> sites for simultaneously improved durability and activity. We discovered that Sn–N<sub><i>x</i></sub> sites not only promote the formation of the more stable D2 FeN<sub>4</sub>C<sub>10</sub> sites but also invoke a unique D3 SnN<sub><i>x</i></sub>–Fe<sup>II</sup>N<sub>4</sub> site that is characterized by having atomically dispersed bridged Sn–N<sub><i>x</i></sub> and Fe–N<sub>4</sub>. This new D3 site exhibits significantly improved stability against demetalation and several times higher turnover frequency for the oxygen reduction reaction (ORR) due to the shift of the reaction pathway from a single-site associative mechanism to a dual-site dissociative mechanism with the adjacent Sn site facilitating a lower overpotential cleavage of the O–O bond. This mechanism bypasses the formation of the otherwise inevitable intermediate that is responsible for demetalation, where two hydroxyl intermediates bind to one Fe site. As a result, a mesoporous Fe/Sn-PNC catalyst exhibits a positively shifted ORR half-wave potential and more than 50% lower peroxide formation. This, in combination with the stable D3 site and enriched D2 Fe sites, significantly enhanced the catalyst’s durability as demonstrated in membrane electrode assemblies using complementary accelerated durability testing protocols.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"133 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c11121","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

One grand challenge for deploying porous carbons with embedded metal–nitrogen–carbon (M–N–C) moieties as platinum group metal (PGM)-free electrocatalysts in proton-exchange membrane fuel cells is their fast degradation and inferior activity. Here, we report the modulation of the local environment at Fe–N4 sites via the application of atomic Sn–Nx sites for simultaneously improved durability and activity. We discovered that Sn–Nx sites not only promote the formation of the more stable D2 FeN4C10 sites but also invoke a unique D3 SnNx–FeIIN4 site that is characterized by having atomically dispersed bridged Sn–Nx and Fe–N4. This new D3 site exhibits significantly improved stability against demetalation and several times higher turnover frequency for the oxygen reduction reaction (ORR) due to the shift of the reaction pathway from a single-site associative mechanism to a dual-site dissociative mechanism with the adjacent Sn site facilitating a lower overpotential cleavage of the O–O bond. This mechanism bypasses the formation of the otherwise inevitable intermediate that is responsible for demetalation, where two hydroxyl intermediates bind to one Fe site. As a result, a mesoporous Fe/Sn-PNC catalyst exhibits a positively shifted ORR half-wave potential and more than 50% lower peroxide formation. This, in combination with the stable D3 site and enriched D2 Fe sites, significantly enhanced the catalyst’s durability as demonstrated in membrane electrode assemblies using complementary accelerated durability testing protocols.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信