{"title":"Distinguishing black holes with and without spontaneous scalarization in Einstein-scalar-Gauss–Bonnet theories via optical features","authors":"Xi-Jing Wang, Yuan Meng, Xiao-Mei Kuang, Kai Liao","doi":"10.1140/epjc/s10052-024-13612-w","DOIUrl":null,"url":null,"abstract":"<div><p>Spontaneous scalarization in Einstein-scalar-Gauss–Bonnet theory admits both vacuum-general relativity (GR) and scalarized hairy black holes as valid solutions, which provides a distinctive signature of new physics in strong gravity regime. In this paper, we shall examine the optical features of Gauss–Bonnet black holes with spontaneous scalarization, which is governed by the coupling parameter <span>\\(\\lambda \\)</span>. We find that the photon sphere, critical impact parameter and innermost stable circular orbit all decrease as the increasing of <span>\\(\\lambda \\)</span>. Using observable data from Event Horizon Telescope, we establish the upper limit for <span>\\(\\lambda \\)</span>. Then we construct the optical appearances of the scalarized black holes illuminated by various thin accretions. Our findings reveal that the scalarized black holes consistently exhibit smaller shadow sizes and reduced brightness compared to Schwarzschild black holes. Notably, in the case of thin spherical accretion, the shadow of the scalarized black hole is smaller, but the surrounding bright ring is more pronounced. Our results highlight the observable features of the scalarized black holes, providing a distinguishable probe from their counterpart in GR in strong gravity regime.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 12","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13612-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13612-w","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
Spontaneous scalarization in Einstein-scalar-Gauss–Bonnet theory admits both vacuum-general relativity (GR) and scalarized hairy black holes as valid solutions, which provides a distinctive signature of new physics in strong gravity regime. In this paper, we shall examine the optical features of Gauss–Bonnet black holes with spontaneous scalarization, which is governed by the coupling parameter \(\lambda \). We find that the photon sphere, critical impact parameter and innermost stable circular orbit all decrease as the increasing of \(\lambda \). Using observable data from Event Horizon Telescope, we establish the upper limit for \(\lambda \). Then we construct the optical appearances of the scalarized black holes illuminated by various thin accretions. Our findings reveal that the scalarized black holes consistently exhibit smaller shadow sizes and reduced brightness compared to Schwarzschild black holes. Notably, in the case of thin spherical accretion, the shadow of the scalarized black hole is smaller, but the surrounding bright ring is more pronounced. Our results highlight the observable features of the scalarized black holes, providing a distinguishable probe from their counterpart in GR in strong gravity regime.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.