Odil Yunusov, Javlon Rayimbaev, Furkat Sarikulov, Muhammad Zahid, Ahmadjon Abdujabbarov, Zdeněk Stuchlík
{"title":"Rotating charged black holes in EMS theory: shadow studies and constraints from EHT observations","authors":"Odil Yunusov, Javlon Rayimbaev, Furkat Sarikulov, Muhammad Zahid, Ahmadjon Abdujabbarov, Zdeněk Stuchlík","doi":"10.1140/epjc/s10052-024-13500-3","DOIUrl":null,"url":null,"abstract":"<div><p>One of the possible ways to test gravity theories and get constraints on parameters of a gravity theory and a black hole is based on studies of black hole shadow applying Event Horizon Telescope (EHT) data from the shadow sizes of M87* and Sgr A*. In this sense, we study the shadow of rotating charged black holes in Einstein–Maxwell scalar (EMS) theory. First, we obtain a rotating EMS black hole solution and analyze the horizon properties. We derive the effective potential for the circular motion of photons along null geodesics around the rotating black hole and obtain the black hole shadow using celestial coordinates. The effects of the black charge and spin and EMS theory parameters on the shape of the black hole shadow, its radius, and distortion parameters are analyzed in detail. We have obtained upper and lower limits for spin and black hole charges of Sgr A* and M87* using their shadow size for various values of EMS parameters. Lastly, we computed and examined the standard shadow radius, equatorial, and polar quasinormal modes using the geometric-optic relationship between the parameters of the quasinormal mode and the conserved values along the geodesics.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 12","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13500-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13500-3","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
One of the possible ways to test gravity theories and get constraints on parameters of a gravity theory and a black hole is based on studies of black hole shadow applying Event Horizon Telescope (EHT) data from the shadow sizes of M87* and Sgr A*. In this sense, we study the shadow of rotating charged black holes in Einstein–Maxwell scalar (EMS) theory. First, we obtain a rotating EMS black hole solution and analyze the horizon properties. We derive the effective potential for the circular motion of photons along null geodesics around the rotating black hole and obtain the black hole shadow using celestial coordinates. The effects of the black charge and spin and EMS theory parameters on the shape of the black hole shadow, its radius, and distortion parameters are analyzed in detail. We have obtained upper and lower limits for spin and black hole charges of Sgr A* and M87* using their shadow size for various values of EMS parameters. Lastly, we computed and examined the standard shadow radius, equatorial, and polar quasinormal modes using the geometric-optic relationship between the parameters of the quasinormal mode and the conserved values along the geodesics.
利用事件视界望远镜(EHT)从M87*和Sgr a *的阴影大小中获得的数据,对黑洞阴影进行研究,是检验引力理论并获得引力理论和黑洞参数约束的一种可能方法。在这个意义上,我们研究了爱因斯坦-麦克斯韦标量(EMS)理论中旋转带电黑洞的阴影。首先,我们得到了旋转的EMS黑洞解,并分析了视界性质。我们推导了光子绕旋转黑洞沿零测地线圆周运动的有效势,并利用天体坐标得到了黑洞的阴影。详细分析了黑电荷、自旋和电磁理论参数对黑洞阴影形状、半径和畸变参数的影响。利用Sgr A*和M87*的阴影大小,我们得到了Sgr A*和M87*的自旋电荷和黑洞电荷的上下限。最后,利用准正模参数与测地线上的守恒值之间的几何光学关系,计算并检验了标准阴影半径、赤道和极准正模。
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.