Employing a MoO2@NiO heterojunction as a highly selective and efficient electrochemical ethanol-to-acetaldehyde conversion catalyst†

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
CrystEngComm Pub Date : 2024-11-05 DOI:10.1039/D4CE01039F
Junhao Wu, Xiao Zhang, Sijia Ren, Xinhui Lu, Jiaxin Yang and Kui Li
{"title":"Employing a MoO2@NiO heterojunction as a highly selective and efficient electrochemical ethanol-to-acetaldehyde conversion catalyst†","authors":"Junhao Wu, Xiao Zhang, Sijia Ren, Xinhui Lu, Jiaxin Yang and Kui Li","doi":"10.1039/D4CE01039F","DOIUrl":null,"url":null,"abstract":"<p >The electrochemical manipulation of organic compounds offers a promising alternative for the synthesis of valuable organic materials under mild conditions. In this study, the MoO<small><sub>2</sub></small>@NiO heterostructure was successfully synthesized as an efficient thin-film electrode material for electrochemical ethanol oxidation, using amorphous Ni(OH)<small><sub><em>x</em></sub></small> nanosheets as the precursor. During electrocatalytic ethanol oxidation, this electrode exhibited a significantly reduced overpotential, achieving a value of only 1.41 V at a current density of 50 mA cm<small><sup>−2</sup></small>. Additionally, product analysis revealed that the heterojunction electrode demonstrated high faradaic efficiency (70%) and selectivity (80%) for acetaldehyde. The outstanding performance of this electrode can be attributed to the <em>in situ</em> transformation of MoO<small><sub>2</sub></small> species during the catalytic process. In the electrolyte, MoO<small><sub>2</sub></small> exists as MoO<small><sub>4</sub></small><small><sup>2−</sup></small> and undergoes a series of processes including precipitation, dissolution, and redeposition on the electrode surface. These processes lead to the formation of a novel molecular outer layer, significantly enhancing the activity and stability of the electrode material. This study provides valuable insights into the potential replacement of anodes in the electrocatalytic oxidation of ethanol in aqueous solutions, thereby contributing to the development of more efficient and sustainable electrochemical systems.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 47","pages":" 6701-6706"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ce/d4ce01039f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical manipulation of organic compounds offers a promising alternative for the synthesis of valuable organic materials under mild conditions. In this study, the MoO2@NiO heterostructure was successfully synthesized as an efficient thin-film electrode material for electrochemical ethanol oxidation, using amorphous Ni(OH)x nanosheets as the precursor. During electrocatalytic ethanol oxidation, this electrode exhibited a significantly reduced overpotential, achieving a value of only 1.41 V at a current density of 50 mA cm−2. Additionally, product analysis revealed that the heterojunction electrode demonstrated high faradaic efficiency (70%) and selectivity (80%) for acetaldehyde. The outstanding performance of this electrode can be attributed to the in situ transformation of MoO2 species during the catalytic process. In the electrolyte, MoO2 exists as MoO42− and undergoes a series of processes including precipitation, dissolution, and redeposition on the electrode surface. These processes lead to the formation of a novel molecular outer layer, significantly enhancing the activity and stability of the electrode material. This study provides valuable insights into the potential replacement of anodes in the electrocatalytic oxidation of ethanol in aqueous solutions, thereby contributing to the development of more efficient and sustainable electrochemical systems.

Abstract Image

采用MoO2@NiO异质结作为高选择性和高效的电化学乙醇-乙醛转化催化剂†
有机化合物的电化学处理为在温和条件下合成有价值的有机材料提供了一个有前途的选择。本研究以无定形Ni(OH)x纳米片为前驱体,成功合成了MoO2@NiO异质结构作为乙醇电化学氧化的高效薄膜电极材料。在电催化乙醇氧化过程中,该电极的过电位显著降低,在电流密度为50 mA cm−2时,过电位仅为1.41 V。此外,产品分析表明,异质结电极对乙醛具有很高的法拉第效率(70%)和选择性(80%)。该电极的优异性能可归因于在催化过程中MoO2物质的原位转化。在电解质中,MoO2以MoO42−的形式存在,并在电极表面经历了沉淀、溶解、再沉积等一系列过程。这些过程导致了一种新的分子外层的形成,显著提高了电极材料的活性和稳定性。这项研究为在水溶液中乙醇的电催化氧化中潜在的阳极替代提供了有价值的见解,从而有助于开发更有效和可持续的电化学系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信