A Robust Multi-Modal Deep Learning-Based Fault Diagnosis Method for PV Systems

IF 3.3 Q3 ENERGY & FUELS
Shahabodin Afrasiabi;Sarah Allahmoradi;Mousa Afrasiabi;Xiaodong Liang;C. Y. Chung;Jamshid Aghaei
{"title":"A Robust Multi-Modal Deep Learning-Based Fault Diagnosis Method for PV Systems","authors":"Shahabodin Afrasiabi;Sarah Allahmoradi;Mousa Afrasiabi;Xiaodong Liang;C. Y. Chung;Jamshid Aghaei","doi":"10.1109/OAJPE.2024.3497880","DOIUrl":null,"url":null,"abstract":"In this paper, a robust, multi-modal deep-learning-based fault identification method is proposed for solar photovoltaic (PV) systems, capable of detecting a wide range of faults at PV arrays, inverters, sensors, and grid connections. The proposed method combines residual convolutional neural networks (CNNs) and gated recurrent units (GRUs) to effectively extract both spatial and temporal features from raw PV data. To enhance the proposed model’s robustness and accuracy, a probabilistic loss function based on the entropy theory is formulated. The proposed method is validated using both experimental data obtained from a PV emulator-based test system and simulation data, achieving over 98% accuracy in fault identification under various noise conditions. The results indicate that the proposed model outperforms conventional CNN- and MSVM-based methods, demonstrating its potential in providing precise fault diagnostics in PV systems.","PeriodicalId":56187,"journal":{"name":"IEEE Open Access Journal of Power and Energy","volume":"11 ","pages":"583-594"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10752620","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Access Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10752620/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a robust, multi-modal deep-learning-based fault identification method is proposed for solar photovoltaic (PV) systems, capable of detecting a wide range of faults at PV arrays, inverters, sensors, and grid connections. The proposed method combines residual convolutional neural networks (CNNs) and gated recurrent units (GRUs) to effectively extract both spatial and temporal features from raw PV data. To enhance the proposed model’s robustness and accuracy, a probabilistic loss function based on the entropy theory is formulated. The proposed method is validated using both experimental data obtained from a PV emulator-based test system and simulation data, achieving over 98% accuracy in fault identification under various noise conditions. The results indicate that the proposed model outperforms conventional CNN- and MSVM-based methods, demonstrating its potential in providing precise fault diagnostics in PV systems.
基于鲁棒多模态深度学习的光伏系统故障诊断方法
本文提出了一种鲁棒的、基于多模态深度学习的太阳能光伏系统故障识别方法,该方法能够检测光伏阵列、逆变器、传感器和电网连接的各种故障。该方法结合残差卷积神经网络(cnn)和门控递归单元(gru),有效地从原始PV数据中提取时空特征。为了提高模型的鲁棒性和准确性,基于熵理论构造了一个概率损失函数。利用光伏仿真器测试系统的实验数据和仿真数据对该方法进行了验证,在各种噪声条件下的故障识别准确率达到98%以上。结果表明,该模型优于传统的基于CNN和msvm的方法,显示了其在光伏系统中提供精确故障诊断的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
5.30%
发文量
45
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信