Qin Li;Pai Xu;Xuan Yang;Yuankai Wu;Hongwen He;Deqiang He
{"title":"Spatial-Temporal Traffic Prediction With an Interactive Spatial-Enhanced Graph Convolutional Network Model","authors":"Qin Li;Pai Xu;Xuan Yang;Yuankai Wu;Hongwen He;Deqiang He","doi":"10.1109/TITS.2024.3467172","DOIUrl":null,"url":null,"abstract":"Accurate traffic prediction is crucial for effective traffic control and risk assessment. Traffic data exhibits a distinct nature, characterized by the interplay of swift, sudden short-term variations and enduring, extended long-term trends within specific regions. This intricate intermingling and interaction give rise to diverse spatial propagation patterns. Successful traffic prediction models necessitate mastering multi-scale temporal and dynamic spatial correlations, as well as their intricate interrelationships. In this study, we present a novel spatial-temporal traffic prediction framework named \n<underline>I</u>\nnteractive \n<underline>S</u>\npatial-Enhanced \n<underline>G</u>\nraph \n<underline>C</u>\nonvolution \n<underline>N</u>\network (ISGCN). Our key innovation lies in the introduction of a novel dynamic graph convolution module, which not only captures overarching spatial correlations but also unveils the concealed evolution of dynamic spatial correlations over time. By seamlessly integrating the graph convolutional module with temporal sample convolution and interaction blocks, we adeptly bridge multi-scale temporal correlations with the acquired dynamic spatial correlations. Additionally, we harness diverse temporal granularities data to comprehensively capture global temporal correlations. Experiments conducted on four real-world traffic datasets illustrate that ISGCN outperforms diverse types of state-of-the-art baseline models.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"25 12","pages":"20767-20778"},"PeriodicalIF":7.9000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10706983/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate traffic prediction is crucial for effective traffic control and risk assessment. Traffic data exhibits a distinct nature, characterized by the interplay of swift, sudden short-term variations and enduring, extended long-term trends within specific regions. This intricate intermingling and interaction give rise to diverse spatial propagation patterns. Successful traffic prediction models necessitate mastering multi-scale temporal and dynamic spatial correlations, as well as their intricate interrelationships. In this study, we present a novel spatial-temporal traffic prediction framework named
I
nteractive
S
patial-Enhanced
G
raph
C
onvolution
N
etwork (ISGCN). Our key innovation lies in the introduction of a novel dynamic graph convolution module, which not only captures overarching spatial correlations but also unveils the concealed evolution of dynamic spatial correlations over time. By seamlessly integrating the graph convolutional module with temporal sample convolution and interaction blocks, we adeptly bridge multi-scale temporal correlations with the acquired dynamic spatial correlations. Additionally, we harness diverse temporal granularities data to comprehensively capture global temporal correlations. Experiments conducted on four real-world traffic datasets illustrate that ISGCN outperforms diverse types of state-of-the-art baseline models.
期刊介绍:
The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.