{"title":"Small break LOCA studies for different layouts of passive safety systems in the IRIS reactor","authors":"Siniša Šadek, Davor Grgić, Paulina Družijanić","doi":"10.1016/j.nucengdes.2024.113745","DOIUrl":null,"url":null,"abstract":"<div><div>IRIS (International Reactor Innovative and Secure) is an integral, medium power, light water reactor with advanced safety features. In the first decade of the 21<sup>st</sup> century, 22 institutions under the leadership of Westinghouse Electric Corporation were involved in its development. The University of Zagreb, along with the Polytechnic of Milan, was in charge of performing safety analyses. A detailed plant model is developed using the RELAP5 code for the analyses of thermal–hydraulic processes in the reactor vessel, the GOTHIC code for the analysis of the processes in the containment and, in addition, the ASYST code for the calculation of a severe accident. Some of the previous small break loss-of-coolant accident analyzes at the existing pipelines are repeated to test the improved plant model. However, the focus of the paper is on the new set of analyzes of hypothetical breaks along the reactor vessel with the aim of determining whether the passive safety systems can ensure successful core cooling. For this purpose, two models are developed with different configurations of the emergency heat removal system and the safety systems inside the containment that inject water into the reactor vessel. The results show the complex and rather ambiguous dependence of the reactor coolant system thermal–hydraulic behaviour on the selected boundary conditions. The scenarios analyzed vary from design basis events to severe accidents. The capabilities of specific safety systems in mitigating the consequences of an accident are determined, depending on the position and size of the break on the reactor vessel wall.</div></div>","PeriodicalId":19170,"journal":{"name":"Nuclear Engineering and Design","volume":"431 ","pages":"Article 113745"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549324008458","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
IRIS (International Reactor Innovative and Secure) is an integral, medium power, light water reactor with advanced safety features. In the first decade of the 21st century, 22 institutions under the leadership of Westinghouse Electric Corporation were involved in its development. The University of Zagreb, along with the Polytechnic of Milan, was in charge of performing safety analyses. A detailed plant model is developed using the RELAP5 code for the analyses of thermal–hydraulic processes in the reactor vessel, the GOTHIC code for the analysis of the processes in the containment and, in addition, the ASYST code for the calculation of a severe accident. Some of the previous small break loss-of-coolant accident analyzes at the existing pipelines are repeated to test the improved plant model. However, the focus of the paper is on the new set of analyzes of hypothetical breaks along the reactor vessel with the aim of determining whether the passive safety systems can ensure successful core cooling. For this purpose, two models are developed with different configurations of the emergency heat removal system and the safety systems inside the containment that inject water into the reactor vessel. The results show the complex and rather ambiguous dependence of the reactor coolant system thermal–hydraulic behaviour on the selected boundary conditions. The scenarios analyzed vary from design basis events to severe accidents. The capabilities of specific safety systems in mitigating the consequences of an accident are determined, depending on the position and size of the break on the reactor vessel wall.
期刊介绍:
Nuclear Engineering and Design covers the wide range of disciplines involved in the engineering, design, safety and construction of nuclear fission reactors. The Editors welcome papers both on applied and innovative aspects and developments in nuclear science and technology.
Fundamentals of Reactor Design include:
• Thermal-Hydraulics and Core Physics
• Safety Analysis, Risk Assessment (PSA)
• Structural and Mechanical Engineering
• Materials Science
• Fuel Behavior and Design
• Structural Plant Design
• Engineering of Reactor Components
• Experiments
Aspects beyond fundamentals of Reactor Design covered:
• Accident Mitigation Measures
• Reactor Control Systems
• Licensing Issues
• Safeguard Engineering
• Economy of Plants
• Reprocessing / Waste Disposal
• Applications of Nuclear Energy
• Maintenance
• Decommissioning
Papers on new reactor ideas and developments (Generation IV reactors) such as inherently safe modular HTRs, High Performance LWRs/HWRs and LMFBs/GFR will be considered; Actinide Burners, Accelerator Driven Systems, Energy Amplifiers and other special designs of power and research reactors and their applications are also encouraged.