Study on the adsorption performance of toluene by bimetallic doped MOFs with high adsorption capacity

IF 4 2区 化学 Q2 CHEMISTRY, PHYSICAL
Yunxia Li, Jiawei Cao, Qingqing Liu, Xinru Hu, Yongqiang Wang, Fang Liu
{"title":"Study on the adsorption performance of toluene by bimetallic doped MOFs with high adsorption capacity","authors":"Yunxia Li,&nbsp;Jiawei Cao,&nbsp;Qingqing Liu,&nbsp;Xinru Hu,&nbsp;Yongqiang Wang,&nbsp;Fang Liu","doi":"10.1016/j.molstruc.2024.140912","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, Cr-MIL-101-M doped with metal ions (Ce<sup>3+</sup>, Fe<sup>3+</sup>, Al<sup>3+</sup>) was synthesized by hydrothermal method for toluene adsorption. The physical and chemical properties of the adsorbent were studied by XRD, SEM, EDS, BET, CO<sub>2</sub>-TPD, TG and other characterization methods. The results show that doping metal ions can effectively improve the toluene adsorption capacity of Cr-MIL-101, with aluminum being the optimal doping metal and the best doping ratio being 20%. Under these conditions, Cr-MIL-101- 20% Al has more basic adsorption sites, a larger specific surface area (3106.37 m²/g) and pore volume (1.85 cm³/g), which provides more active sites for toluene adsorption. Therefore, Cr-MIL-101-20%Al possesses the highest saturation adsorption capacity (486.05 mg/g). Kinetic analysis indicated that both physical and chemical adsorption significantly contributed to the uptake of toluene by bimetallic MOFs, and the doping of 20% Al markedly enhanced the adsorption rate, achieving the optimal adsorption effect.</div></div>","PeriodicalId":16414,"journal":{"name":"Journal of Molecular Structure","volume":"1324 ","pages":"Article 140912"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022286024034197","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, Cr-MIL-101-M doped with metal ions (Ce3+, Fe3+, Al3+) was synthesized by hydrothermal method for toluene adsorption. The physical and chemical properties of the adsorbent were studied by XRD, SEM, EDS, BET, CO2-TPD, TG and other characterization methods. The results show that doping metal ions can effectively improve the toluene adsorption capacity of Cr-MIL-101, with aluminum being the optimal doping metal and the best doping ratio being 20%. Under these conditions, Cr-MIL-101- 20% Al has more basic adsorption sites, a larger specific surface area (3106.37 m²/g) and pore volume (1.85 cm³/g), which provides more active sites for toluene adsorption. Therefore, Cr-MIL-101-20%Al possesses the highest saturation adsorption capacity (486.05 mg/g). Kinetic analysis indicated that both physical and chemical adsorption significantly contributed to the uptake of toluene by bimetallic MOFs, and the doping of 20% Al markedly enhanced the adsorption rate, achieving the optimal adsorption effect.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Structure
Journal of Molecular Structure 化学-物理化学
CiteScore
7.10
自引率
15.80%
发文量
2384
审稿时长
45 days
期刊介绍: The Journal of Molecular Structure is dedicated to the publication of full-length articles and review papers, providing important new structural information on all types of chemical species including: • Stable and unstable molecules in all types of environments (vapour, molecular beam, liquid, solution, liquid crystal, solid state, matrix-isolated, surface-absorbed etc.) • Chemical intermediates • Molecules in excited states • Biological molecules • Polymers. The methods used may include any combination of spectroscopic and non-spectroscopic techniques, for example: • Infrared spectroscopy (mid, far, near) • Raman spectroscopy and non-linear Raman methods (CARS, etc.) • Electronic absorption spectroscopy • Optical rotatory dispersion and circular dichroism • Fluorescence and phosphorescence techniques • Electron spectroscopies (PES, XPS), EXAFS, etc. • Microwave spectroscopy • Electron diffraction • NMR and ESR spectroscopies • Mössbauer spectroscopy • X-ray crystallography • Charge Density Analyses • Computational Studies (supplementing experimental methods) We encourage publications combining theoretical and experimental approaches. The structural insights gained by the studies should be correlated with the properties, activity and/ or reactivity of the molecule under investigation and the relevance of this molecule and its implications should be discussed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信