Sinapic acid alleviates glutamate-induced excitotoxicity by inhibiting neuroinflammation and endoplasmic reticulum stress pathway in C6 glioma cells

IF 2.6 3区 医学 Q3 TOXICOLOGY
Ahmet Mahmut Ortasoz , Ercan Ozdemir , Ahmet Sevki Taskıran , Aysegul Ozturk
{"title":"Sinapic acid alleviates glutamate-induced excitotoxicity by inhibiting neuroinflammation and endoplasmic reticulum stress pathway in C6 glioma cells","authors":"Ahmet Mahmut Ortasoz ,&nbsp;Ercan Ozdemir ,&nbsp;Ahmet Sevki Taskıran ,&nbsp;Aysegul Ozturk","doi":"10.1016/j.tiv.2024.105977","DOIUrl":null,"url":null,"abstract":"<div><div>Sinapic acid (SA) is a polyphenol compound derived from hydroxycinnamic acid found in various foods such as cereals and vegetables and has antioxidant, anti-inflammatory and neuroprotective properties. However, its effects on glutamate-induced excitotoxicity, which is important in neurodegenerative diseases, have not been fully elucidated. This study aimed to investigate the effect of SA on glutamate excitotoxicity and the possible role of proinflammatory cytokines and the endoplasmic reticulum (ER) stress pathway. In the study, C6 rat glioma cell line was used and the cells were divided into 4 groups: control, glutamate, SA and glutamate+SA. Cells were treated with 10 mM glutamate for 24 h to induce excitotoxicity. Additionally, SA was applied to cells at concentrations of 12.5 to 100 μM to examine its effects on glutamate excitotoxicity. XTT test was used for cell viability, and apoptotic cells were determined by immunofluorescence and flow cytometry methods. Proinflammatory cytokines (tumor necrosis factor-alpha, TNF-α and interleukin-beta, IL-1β), ER stress markers (glucose regulatory protein 78, GRP78; C/EBP homologous protein, CHOP and activating transcription factor-4, ATF-4) and caspase-3 was used to measure ELISA method. Findings indicated that SA (50 μM) significantly increased cell viability against glutamate-induced excitotoxicity (<em>p</em> &lt; 0.05). Also, SA caused a significant decrease in TNF-α, IL-1β, GRP78, CHOP, ATF-4 and caspase-3 levels in glutamate-treated cells (<em>p</em> &lt; 0.05). Flow cytometry and immunofluorescence staining results showed that SA reduced apoptosis in C6 glioma cells. In conclusion, our findings suggested that SA attenuated glutamate-induced excitotoxicity by preventing apoptosis through reducing proinflammatory cytokines and ER stress protein levels.</div></div>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":"103 ","pages":"Article 105977"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology in Vitro","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0887233324002078","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sinapic acid (SA) is a polyphenol compound derived from hydroxycinnamic acid found in various foods such as cereals and vegetables and has antioxidant, anti-inflammatory and neuroprotective properties. However, its effects on glutamate-induced excitotoxicity, which is important in neurodegenerative diseases, have not been fully elucidated. This study aimed to investigate the effect of SA on glutamate excitotoxicity and the possible role of proinflammatory cytokines and the endoplasmic reticulum (ER) stress pathway. In the study, C6 rat glioma cell line was used and the cells were divided into 4 groups: control, glutamate, SA and glutamate+SA. Cells were treated with 10 mM glutamate for 24 h to induce excitotoxicity. Additionally, SA was applied to cells at concentrations of 12.5 to 100 μM to examine its effects on glutamate excitotoxicity. XTT test was used for cell viability, and apoptotic cells were determined by immunofluorescence and flow cytometry methods. Proinflammatory cytokines (tumor necrosis factor-alpha, TNF-α and interleukin-beta, IL-1β), ER stress markers (glucose regulatory protein 78, GRP78; C/EBP homologous protein, CHOP and activating transcription factor-4, ATF-4) and caspase-3 was used to measure ELISA method. Findings indicated that SA (50 μM) significantly increased cell viability against glutamate-induced excitotoxicity (p < 0.05). Also, SA caused a significant decrease in TNF-α, IL-1β, GRP78, CHOP, ATF-4 and caspase-3 levels in glutamate-treated cells (p < 0.05). Flow cytometry and immunofluorescence staining results showed that SA reduced apoptosis in C6 glioma cells. In conclusion, our findings suggested that SA attenuated glutamate-induced excitotoxicity by preventing apoptosis through reducing proinflammatory cytokines and ER stress protein levels.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Toxicology in Vitro
Toxicology in Vitro 医学-毒理学
CiteScore
6.50
自引率
3.10%
发文量
181
审稿时长
65 days
期刊介绍: Toxicology in Vitro publishes original research papers and reviews on the application and use of in vitro systems for assessing or predicting the toxic effects of chemicals and elucidating their mechanisms of action. These in vitro techniques include utilizing cell or tissue cultures, isolated cells, tissue slices, subcellular fractions, transgenic cell cultures, and cells from transgenic organisms, as well as in silico modelling. The Journal will focus on investigations that involve the development and validation of new in vitro methods, e.g. for prediction of toxic effects based on traditional and in silico modelling; on the use of methods in high-throughput toxicology and pharmacology; elucidation of mechanisms of toxic action; the application of genomics, transcriptomics and proteomics in toxicology, as well as on comparative studies that characterise the relationship between in vitro and in vivo findings. The Journal strongly encourages the submission of manuscripts that focus on the development of in vitro methods, their practical applications and regulatory use (e.g. in the areas of food components cosmetics, pharmaceuticals, pesticides, and industrial chemicals). Toxicology in Vitro discourages papers that record reporting on toxicological effects from materials, such as plant extracts or herbal medicines, that have not been chemically characterized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信