Efficient photocatalytic elimination of antibiotics over metal-free CNx/PANI/graphene sponge system

IF 3.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Beibei Zhu , Jie Zhou , Lubin Ni , Guowang Diao
{"title":"Efficient photocatalytic elimination of antibiotics over metal-free CNx/PANI/graphene sponge system","authors":"Beibei Zhu ,&nbsp;Jie Zhou ,&nbsp;Lubin Ni ,&nbsp;Guowang Diao","doi":"10.1016/j.solidstatesciences.2024.107781","DOIUrl":null,"url":null,"abstract":"<div><div>Purification of antibiotic wastewater has been recognized as one of the most important issues in the environmental community, for which, developing the metal-free photocatalyst system is an environment-friendly and economic-feasible way. Herein, we designed the metal-free C<sub>3</sub>N<sub>x</sub>/PANI photocatalyst wrapped around the graphene sponge (CPG) for coupled antibiotic wastewater adsorption and purification. The properties of CPG and their relation with purification performance were investigated using various characterization techniques and photocatalysis evaluation. As a result, we found that the advanced porous structure of graphene sponge can favor wastewater adsorption and photon utilization efficiency due to the crosslink channels with a higher crosslinking density. Meanwhile, the layered structure of CN<sub>x</sub> effectively facilitates the transfer of charge carriers while the PANI exhibits high-capacity visible light adsorption. Consequently, after optimization, CPG8 exhibited better photocatalytic activity with a sulfamethazine degradability of 10 mg/L within 40 min. The novel approach and new insights obtained in this work give important guidance for designing advanced photocatalytic systems used in wastewater purification.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"159 ","pages":"Article 107781"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1293255824003467","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Purification of antibiotic wastewater has been recognized as one of the most important issues in the environmental community, for which, developing the metal-free photocatalyst system is an environment-friendly and economic-feasible way. Herein, we designed the metal-free C3Nx/PANI photocatalyst wrapped around the graphene sponge (CPG) for coupled antibiotic wastewater adsorption and purification. The properties of CPG and their relation with purification performance were investigated using various characterization techniques and photocatalysis evaluation. As a result, we found that the advanced porous structure of graphene sponge can favor wastewater adsorption and photon utilization efficiency due to the crosslink channels with a higher crosslinking density. Meanwhile, the layered structure of CNx effectively facilitates the transfer of charge carriers while the PANI exhibits high-capacity visible light adsorption. Consequently, after optimization, CPG8 exhibited better photocatalytic activity with a sulfamethazine degradability of 10 mg/L within 40 min. The novel approach and new insights obtained in this work give important guidance for designing advanced photocatalytic systems used in wastewater purification.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid State Sciences
Solid State Sciences 化学-无机化学与核化学
CiteScore
6.60
自引率
2.90%
发文量
214
审稿时长
27 days
期刊介绍: Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments. Key topics for stand-alone papers and special issues: -Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials -Physical properties, emphasizing but not limited to the electrical, magnetical and optical features -Materials related to information technology and energy and environmental sciences. The journal publishes feature articles from experts in the field upon invitation. Solid State Sciences - your gateway to energy-related materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信