Strength training attenuates neuropathic pain by Preventing dendritic Spine dysgenesis through Suppressing Rac1 and inflammation in experimental autoimmune encephalomyelitis

IF 2.9 3区 医学 Q2 CLINICAL NEUROLOGY
Amir Hossein Saffar Kohneh Quchan, Mohammad Reza Kordi, Golrokh Mohammadi, Raheleh Amiri Raeez, Siroos Choobineh
{"title":"Strength training attenuates neuropathic pain by Preventing dendritic Spine dysgenesis through Suppressing Rac1 and inflammation in experimental autoimmune encephalomyelitis","authors":"Amir Hossein Saffar Kohneh Quchan,&nbsp;Mohammad Reza Kordi,&nbsp;Golrokh Mohammadi,&nbsp;Raheleh Amiri Raeez,&nbsp;Siroos Choobineh","doi":"10.1016/j.msard.2024.106192","DOIUrl":null,"url":null,"abstract":"<div><div>Chronic pain is a challenge and major health problem to basic science and clinical practice. Pain is one of the worst symptoms of multiple sclerosis (MS), which has a significant impact on their quality of life. Rac1 is an important intracellular signaling molecule involved in spinal dendritic spine pathology and activation of IL-1β and TNF-α that are associated with chronic neuropathic pain. As a result, targeting Rac1 presents a promising approach to managing neuropathic pain. Clinical studies have demonstrated that physical exercise is a non-pharmacological strategy that positively influences disease progression in individuals with MS, but underlying mechanism of exercise on Rac1- induced neuropathic pain is not well understood. This study examined the effects of a 4-week strength training on Rac1 expression, IL-1B, TNF-α, TGF-β1 levels, MDA concentrations, SOD activity, dendritic spine abnormalities in the dorsal horn of the spinal cord, as well as nociceptive behaviors (formalin test) and motor function (Rotarod test) during the chronic phase of experimental autoimmune encephalomyelitis (EAE). The findings indicated that strength training increased TGF-β1 expression and SOD activity while decreasing the expression of Rac1, IL-1β, TNF-α, and MDA and reducing dendritic spine dysgenesis in the dorsal horn of the spinal cord. We observed strength training effectively reduced nociceptive behaviors and improved motor function in mice with EAE. In summary, regular physical exercise may modulate neuropathic pain through inhibition of dendritic spine dysgenesis, inflammation and oxidative stress in the dorsal horn of the spinal cord.</div></div>","PeriodicalId":18958,"journal":{"name":"Multiple sclerosis and related disorders","volume":"93 ","pages":"Article 106192"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiple sclerosis and related disorders","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211034824007685","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic pain is a challenge and major health problem to basic science and clinical practice. Pain is one of the worst symptoms of multiple sclerosis (MS), which has a significant impact on their quality of life. Rac1 is an important intracellular signaling molecule involved in spinal dendritic spine pathology and activation of IL-1β and TNF-α that are associated with chronic neuropathic pain. As a result, targeting Rac1 presents a promising approach to managing neuropathic pain. Clinical studies have demonstrated that physical exercise is a non-pharmacological strategy that positively influences disease progression in individuals with MS, but underlying mechanism of exercise on Rac1- induced neuropathic pain is not well understood. This study examined the effects of a 4-week strength training on Rac1 expression, IL-1B, TNF-α, TGF-β1 levels, MDA concentrations, SOD activity, dendritic spine abnormalities in the dorsal horn of the spinal cord, as well as nociceptive behaviors (formalin test) and motor function (Rotarod test) during the chronic phase of experimental autoimmune encephalomyelitis (EAE). The findings indicated that strength training increased TGF-β1 expression and SOD activity while decreasing the expression of Rac1, IL-1β, TNF-α, and MDA and reducing dendritic spine dysgenesis in the dorsal horn of the spinal cord. We observed strength training effectively reduced nociceptive behaviors and improved motor function in mice with EAE. In summary, regular physical exercise may modulate neuropathic pain through inhibition of dendritic spine dysgenesis, inflammation and oxidative stress in the dorsal horn of the spinal cord.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
20.00%
发文量
814
审稿时长
66 days
期刊介绍: Multiple Sclerosis is an area of ever expanding research and escalating publications. Multiple Sclerosis and Related Disorders is a wide ranging international journal supported by key researchers from all neuroscience domains that focus on MS and associated disease of the central nervous system. The primary aim of this new journal is the rapid publication of high quality original research in the field. Important secondary aims will be timely updates and editorials on important scientific and clinical care advances, controversies in the field, and invited opinion articles from current thought leaders on topical issues. One section of the journal will focus on teaching, written to enhance the practice of community and academic neurologists involved in the care of MS patients. Summaries of key articles written for a lay audience will be provided as an on-line resource. A team of four chief editors is supported by leading section editors who will commission and appraise original and review articles concerning: clinical neurology, neuroimaging, neuropathology, neuroepidemiology, therapeutics, genetics / transcriptomics, experimental models, neuroimmunology, biomarkers, neuropsychology, neurorehabilitation, measurement scales, teaching, neuroethics and lay communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信