Dataset of Centella Asiatica leaves for quality assessment and machine learning applications

IF 1 Q3 MULTIDISCIPLINARY SCIENCES
Rohini Jadhav , Mayuri Molawade , Amol Bhosle , Yogesh Suryawanshi , Kailas Patil , Prawit Chumchu
{"title":"Dataset of Centella Asiatica leaves for quality assessment and machine learning applications","authors":"Rohini Jadhav ,&nbsp;Mayuri Molawade ,&nbsp;Amol Bhosle ,&nbsp;Yogesh Suryawanshi ,&nbsp;Kailas Patil ,&nbsp;Prawit Chumchu","doi":"10.1016/j.dib.2024.111150","DOIUrl":null,"url":null,"abstract":"<div><div><em>Centella asiatica</em> is a significant medicinal herb extensively used in traditional oriental medicine and gaining global popularity. The primary constituents of <em>Centella asiatica</em> leaves are triterpenoid saponins, which are predominantly believed to be responsible for its therapeutic properties. Ensuring the use of high-quality leaves in herbal medicine preparation is crucial across all medicinal practices. To address this quality control issue using machine learning applications, we have developed an image dataset of <em>Centella asiatica</em> leaves. The images were captured using Samsung Galaxy M21 mobile phones and depict the leaves in “Dried,” “Healthy,” and “Unhealthy” states. These states are further divided into “Single” and “Multiple” leaves categories, with “Single” leaves being further classified into “Front” and “Back” views to facilitate a comprehensive study. The images were pre-processed and standardized to 1024 × 768 dimensions, resulting in a dataset comprising a total of 9094 images. This dataset is instrumental in the development and evaluation of image recognition algorithms, serving as a foundational resource for computer vision research. Moreover, it provides a valuable platform for testing and validating algorithms in areas such as image categorization and object detection. For researchers exploring the medicinal potential of <em>Centella asiatica</em> in traditional medicine, this dataset offers critical information on the plantʼs health, thereby advancing research in herbal medicine and ethnopharmacology.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"57 ","pages":"Article 111150"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340924011120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Centella asiatica is a significant medicinal herb extensively used in traditional oriental medicine and gaining global popularity. The primary constituents of Centella asiatica leaves are triterpenoid saponins, which are predominantly believed to be responsible for its therapeutic properties. Ensuring the use of high-quality leaves in herbal medicine preparation is crucial across all medicinal practices. To address this quality control issue using machine learning applications, we have developed an image dataset of Centella asiatica leaves. The images were captured using Samsung Galaxy M21 mobile phones and depict the leaves in “Dried,” “Healthy,” and “Unhealthy” states. These states are further divided into “Single” and “Multiple” leaves categories, with “Single” leaves being further classified into “Front” and “Back” views to facilitate a comprehensive study. The images were pre-processed and standardized to 1024 × 768 dimensions, resulting in a dataset comprising a total of 9094 images. This dataset is instrumental in the development and evaluation of image recognition algorithms, serving as a foundational resource for computer vision research. Moreover, it provides a valuable platform for testing and validating algorithms in areas such as image categorization and object detection. For researchers exploring the medicinal potential of Centella asiatica in traditional medicine, this dataset offers critical information on the plantʼs health, thereby advancing research in herbal medicine and ethnopharmacology.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信