Pengfei He , Guangliang Hou , Haitao Cao , Feng Yue
{"title":"The influence of geosynthetic properties on their shear behaviors at the interface with frozen soil","authors":"Pengfei He , Guangliang Hou , Haitao Cao , Feng Yue","doi":"10.1016/j.geotexmem.2024.11.011","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the shear properties of the interfaces between sand and short-staple nonwoven geotextile (GT1), long-staple nonwoven geotextile (GT2), and geomembrane (GM) under varying conditions of testing temperature, sand moisture content, and normal stress through temperature-controlled direct shear tests. The results reveal that the shear stress-shear displacement curves for the sand-GT1 and sand-GM interfaces can be broadly categorized into an elastic deformation stage, a nonlinear growth stage, and a stable stage. However, the sand-GT2 interface displays a continuously increasing trend throughout the experiment. The peak friction angles of the interfaces increase significantly as the temperature decreases, following the order GT1 > GT2 > GM. The average residual friction angle of sand with GT1, GT2, and GM decreased by 14.8%, 10.4%, and 31.1%, respectively, compared to the peak friction angle. The peak cohesion at the sand-GM interface is relatively weaker than that at the sand-GT1 and sand-GT2 interfaces. The shear mechanisms between frozen soil and geotextiles involve ice cementation, rolling, interlocking, and fiber tensioning, while the shear mechanisms between frozen soil and GM comprise ice cementation, rolling, indentation, and plowing.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 2","pages":"Pages 497-509"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114424001365","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the shear properties of the interfaces between sand and short-staple nonwoven geotextile (GT1), long-staple nonwoven geotextile (GT2), and geomembrane (GM) under varying conditions of testing temperature, sand moisture content, and normal stress through temperature-controlled direct shear tests. The results reveal that the shear stress-shear displacement curves for the sand-GT1 and sand-GM interfaces can be broadly categorized into an elastic deformation stage, a nonlinear growth stage, and a stable stage. However, the sand-GT2 interface displays a continuously increasing trend throughout the experiment. The peak friction angles of the interfaces increase significantly as the temperature decreases, following the order GT1 > GT2 > GM. The average residual friction angle of sand with GT1, GT2, and GM decreased by 14.8%, 10.4%, and 31.1%, respectively, compared to the peak friction angle. The peak cohesion at the sand-GM interface is relatively weaker than that at the sand-GT1 and sand-GT2 interfaces. The shear mechanisms between frozen soil and geotextiles involve ice cementation, rolling, interlocking, and fiber tensioning, while the shear mechanisms between frozen soil and GM comprise ice cementation, rolling, indentation, and plowing.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.